Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fire Ecol ; 20(1): 1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38186675

RESUMO

Background: Wildfires are recognized as an important ecological component of larch-dominated boreal forests in eastern Siberia. However, long-term fire-vegetation dynamics in this unique environment are poorly understood. Recent paleoecological research suggests that intensifying fire regimes may induce millennial-scale shifts in forest structure and composition. This may, in turn, result in positive feedback on intensifying wildfires and permafrost degradation, apart from threatening human livelihoods. Most common fire-vegetation models do not explicitly include detailed individual-based tree population dynamics, but a focus on patterns of forest structure emerging from interactions among individual trees may provide a beneficial perspective on the impacts of changing fire regimes in eastern Siberia. To simulate these impacts on forest structure at millennial timescales, we apply the individual-based, spatially explicit vegetation model LAVESI-FIRE, expanded with a new fire module. Satellite-based fire observations along with fieldwork data were used to inform the implementation of wildfire occurrence and adjust model parameters. Results: Simulations of annual forest development and wildfire activity at a study site in the Republic of Sakha (Yakutia) since the Last Glacial Maximum (c. 20,000 years BP) highlight the variable impacts of fire regimes on forest structure throughout time. Modeled annual fire probability and subsequent burned area in the Holocene compare well with a local reconstruction of charcoal influx in lake sediments. Wildfires can be followed by different forest regeneration pathways, depending on fire frequency and intensity and the pre-fire forest conditions. We find that medium-intensity wildfires at fire return intervals of 50 years or more benefit the dominance of fire-resisting Dahurian larch (Larix gmelinii (Rupr.) Rupr.), while stand-replacing fires tend to enable the establishment of evergreen conifers. Apart from post-fire mortality, wildfires modulate forest development mainly through competition effects and a reduction of the model's litter layer. Conclusion: With its fine-scale population dynamics, LAVESI-FIRE can serve as a highly localized, spatially explicit tool to understand the long-term impacts of boreal wildfires on forest structure and to better constrain interpretations of paleoecological reconstructions of fire activity. Supplementary Information: The online version contains supplementary material available at 10.1186/s42408-023-00238-8.


Antecedentes: Los incendios de vegetación son reconocidos como un componente importante de los bosques boreales dominados por alerces en el este de Siberia. Sin embargo, la dinámica a largo plazo entre fuegos y vegetación en este ambiente único es pobremente entendido. Estudios paleo-ecológicos recientes sugieren que la intensificación de regímenes de fuego puede inducir cambios, a escala de milenos, en la estructura y composición de estos bosques. Estos pueden, a su vez, resultar en una retroalimentación positiva en la intensificación de los incendios y en la degradación del permafrost, aparte de amenazar la vida humana. Los modelos de fuego-vegetación más comunes, no incluyen específicamente detalles basados en la dinámica poblacional de árboles individuales, aunque el enfocarnos en los patrones de la estructura forestal que emerge de interacciones entre árboles individuales puede proveer de una perspectiva beneficiosa sobre los impactos de los cambios en los regímenes del fuego en el este de Siberia. Para simular estos impactos en la estructura forestal a escalas de milenios, aplicamos el modelo espacialmente explícito, individualmente basado, LAVESI-FIRE, expandido en un nuevo módulo de fuego. Observaciones de fuego basadas en imágenes satelitales junto con datos de campo fueron usados para informar la implementación de la ocurrencia de fuegos de vegetación y ajustar los parámetros del modelo. Resultados: Las simulaciones del desarrollo anual de los bosques y de la actividad de los incendios en un sitio de estudio de la República de Sakha (Yakutia) desde el Último Máximo Glacial (c. 20.000 años atrás), resaltan los impactos variables de los regímenes de fuegos en la estructura forestal a través del tiempo. La probabilidad modelada de forma anual en la ocurrencia de incendios y subsecuentemente del área quemada durante el Holoceno se compara muy bien con la reconstrucción del flujo de carbón en los sedimentos lacustres. Los incendios de vegetación pueden verse mediante diferentes patrones de regeneración del bosque, dependiendo de la frecuencia e intensidad de los fuegos y de las condiciones del bosque en el pre-fuego. Encontramos que fuegos de mediana intensidad a intervalos de retorno de unos 50 años o más, benefician la persistencia del alerce dahurian (Larix gmelinii (Rupr.) Rupr.), especie resistente al fuego, mientras que los fuegos de reemplazo tienden a permitir el establecimiento de coníferas siempreverdes. Aparte de la mortalidad post-fuego, los fuegos de vegetación modulan el desarrollo del bosque, fundamentalmente a través de efectos de competencia y una reducción de la capa de mantillo predicho por el modelo. Conclusiones: Con sus características de detectar la dinámica de la población a una escala fina, el modelo LAVESI-FIRE puede servir como una herramienta altamente localizada y espacialmente explícita, para entender los impactos a largo plazo de los bosques boreales sobre la estructura forestal y para mejorar los condicionamientos de las interpretaciones de las reconstrucciones paleo ecológicas en la reconstrucción de la actividad de los incendios.

2.
J Chem Theory Comput ; 19(3): 1044-1049, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36652690

RESUMO

Adsorbates on a surface experience lateral interactions that result in a distribution of adsorption energies. The adsorbate-adsorbate interactions are known to affect the kinetics of surface reactions, which motivates efforts to develop models that accurately account for the interactions. Here, we use density functional theory (DFT) calculations combined with Monte Carlo simulations to investigate how the distribution of adsorbates affects adsorption and desorption of CO from Pt(111). We find that the mean of the average adsorption energy determines the adsorption process, whereas the desorption process can be described by the low energy part of the adsorbate stability distribution. The simulated results are in very good agreement with calorimetry and temperature-programmed desorption experiments and provide a guideline of how to include adsorbate-adsorbate interactions in DFT-based mean-field kinetic models.

3.
J Chem Phys ; 156(6): 064701, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168342

RESUMO

Water formation is relevant in many technological processes and is also an important model reaction. Although water formation over Pd surfaces is widely studied, questions regarding the active site and the main reaction path (OH* + OH*) or (OH* + H*) are still open. Combining first-principles density functional theory calculations and kinetic Monte Carlo simulations, we find that the reaction rate is dominated by surface steps and point defects over a wide range of conditions. The main reaction path is found to be temperature dependent where the OH* + OH* path dominates at low temperatures, whereas the OH* + H* path is the main path at high temperatures. Steps facilitate the OH* formation, which is the rate limiting step under all conditions. OH* is formed via O* + H* association or OOH* splitting at low temperatures, whereas OH* is exclusively formed via O* + H* association at high temperatures. The results of the first-principles-based kinetic model are in excellent agreement with experimental observations at high and low temperatures as well as different gas-phase compositions.

4.
J Phys Chem Lett ; 12(39): 9508-9515, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34559547

RESUMO

Steps at metal surfaces may influence energetics and kinetics of catalytic reactions in unexpected ways. Here, we report a significant reduction of the CO saturation coverage in Pd vicinal surfaces, which in turn is relevant for the light-off of the CO oxidation reaction. The study is based on a systematic investigation of CO adsorption on vicinal Pd(111) surfaces making use of a curved Pd crystal. A combined X-ray Photoelectron Spectroscopy and DFT analysis allows us to demonstrate that an entire row of atomic sites under Pd steps remains free of CO upon saturation at 300 K, leading to a step-density-dependent reduction of CO coverage that correlates with the observed decrease of the light-off temperature during CO oxidation in vicinal Pd surfaces.

5.
Nanoscale ; 13(2): 930-938, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367382

RESUMO

A major aim in the synthesis of nanomaterials is the development of stable materials for high-temperature applications. Although the thermal coarsening of small and active nanocrystals into less active aggregates is universal in material deactivation, the atomic mechanisms governing nanocrystal growth remain elusive. By utilizing colloidally synthesized Pd/SiO2 powder nanocomposites with controlled nanocrystal sizes and spatial arrangements, we unravel the competing contributions of particle coalescence and atomic ripening processes in nanocrystal growth. Through the study of size-controlled nanocrystals, we can uniquely identify the presence of either nanocrystal dimers or smaller nanoclusters, which indicate the relative contributions of these two processes. By controlling and tracking the nanocrystal density, we demonstrate the spatial dependence of nanocrystal coalescence and the spatial independence of Ostwald (atomic) ripening. Overall, we prove that the most significant loss of the nanocrystal surface area is due to high-temperature atomic ripening. This observation is in quantitative agreement with changes in the nanocrystal density produced by simulations of atomic exchange. Using well-defined colloidal materials, we extend our analysis to explain the unusual high-temperature stability of Au/SiO2 materials up to 800 °C.

6.
Chemphyschem ; 21(21): 2407-2410, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32965758

RESUMO

Density functional theory calculations of atomic and molecular adsorption on (111) and (100) metal surfaces reveal marked surface and structure dependent effects of strain. Adsorption in three-fold hollow sites is found to be destabilized by compressive strain whereas the reversed trend is commonly valid for adsorption in four-fold sites. The effects, which are qualitatively explained using a simple two-orbital model, provide insights on how to modify chemical properties by strain design.

7.
Ecol Evol ; 10(2): 962-979, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32015858

RESUMO

Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning.We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (δ13C) and deuterium (δD) isotopes, bulk carbon isotopes (δ13Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution.We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the δ13C and δ13Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our δD record suggests physiological adaptations of woody species to higher atmospheric pCO2 concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state.

8.
PLoS One ; 14(9): e0222011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31525210

RESUMO

Fire regime shifts are driven by climate and natural vegetation changes, but can be strongly affected by human land management. Yet, it is poorly known how humans have influenced fire regimes prior to active wildfire suppression. Among the last 250 years, the human contribution to the global increase in fire occurrence during the mid-19th century is especially unclear, as data sources are limited. Here, we test the extent to which forest management has driven fire regime shifts in a temperate forest landscape. We combine multiple fire proxies (macroscopic charcoal and fire-related biomarkers) derived from highly resolved lake sediments (i.e., 3-5 years per sample), and apply a new statistical approach to classify source area- and temperature-specific fire regimes (biomass burnt, fire episodes). We compare these records with independent climate and vegetation reconstructions. We find two prominent fire regime shifts during the 19th and 20th centuries, driven by an adaptive socio-ecological cycle in human forest management. Although individual fire episodes were triggered mainly by arson (as described in historical documents) during dry summers, the biomass burnt increased unintentionally during the mid-19th century due to the plantation of flammable, fast-growing pine tree monocultures needed for industrialization. State forest management reacted with active fire management and suppression during the 20th century. However, pine cover has been increasing since the 1990s and climate projections predict increasingly dry conditions, suggesting a renewed need for adaptations to reduce the increasing fire risk.


Assuntos
Incêndios , Agricultura Florestal/métodos , Florestas , Sedimentos Geológicos/química , Desenvolvimento Industrial , Carvão Vegetal/análise , Lagos/química , Polônia
9.
J Environ Manage ; 236: 755-768, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30776550

RESUMO

In recent decades, it has been observed that most forest fires in Europe were caused by people. Extreme droughts, which are more often prolonged, can increase the risk of forest fires, not only in southern Europe but also, in Central Europe. Nonetheless, catastrophic fire events are not well recognized in the Central European Lowlands (CEL), where large forest complexes are located. Knowledge of past fire activity in this part of Europe is scarce, although several fires have occurred in this area during the previous millennia. Large coniferous forest monocultures located in the CEL are highly susceptible to fires and other disturbances. Here, we present a case study from the Tuchola Pinewoods (TP; northern Poland), where large pine monocultures are present. The main aim of this study is to document the potential effects past land management has on modern day disturbance regimes using state-of-the-art paleoecological data, historical documents and cartographic materials. We then present a protocol that will help forest managers utilize long-term paleoecological records. Based on paleoecological investigations, historical documents, and cartographic materials, our results show that, in the past 300 years, the TP witnessed not only disastrous fires and but also windfalls by tornados and insect outbreaks. A change in management from Polish to Prussian/German in the 18th century led to the transformation of mixed forests into Scots pine monocultures with the purpose to allow better economic use of the forest. Those administrative decisions led to an ecosystem highly susceptible to disturbances. This article provides a critical review of past forest management as well as future research directions related to the impacts of fire risk on land management and ecosystem services: (a) habitat composition and structure (biodiversity); (b) natural water management; and (c) mitigation of climate changes. Designated forest conditions, management, and future fire risk are a controversial and highly debated topic of forest management by Forestry Units. More research will allow the gathering of reliable information pertinent to management practices with regard to the current fire risks. It is necessary to develop a dialog between scientists and managers to reduce the risk of fires in projected climate change.


Assuntos
Ecossistema , Incêndios , Europa (Continente) , Florestas , Polônia , Árvores
10.
Nat Catal ; 22019.
Artigo em Inglês | MEDLINE | ID: mdl-32118197

RESUMO

In the high-temperature environments needed to perform catalytic processes, supported precious metal catalysts severely lose their activity over time. Even brief exposure to high temperatures can lead to significant losses in activity, which forces manufacturers to use large amounts of noble metals to ensure effective catalyst function for a required lifetime. Generally, loss of catalytic activity is attributed to nanoparticle sintering, or processes by which larger particles grow at the expense of smaller ones. Here, by independently controlling particle size and particle loading using colloidal nanocrystals, we reveal the opposite process as a novel deactivation mechanism: nanoparticles rapidly lose activity by high-temperature nanoparticle decomposition into inactive single atoms. This deactivation route is remarkably fast, leading to severe loss of activity in as little as ten minutes. Importantly, this deactivation pathway is strongly dependent on particle density and concentration of support defect sites. A quantitative statistical model explains how for certain reactions, higher particle densities can lead to more stable catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...