Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 248(12): 1232-1242, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31469941

RESUMO

BACKGROUND: Cleft lip and palate is one of the most common human birth defects, but the underlying etiology is poorly understood. The A/WySn mouse is a spontaneously occurring model of multigenic clefting in which 20% to 30% of individuals develop an orofacial cleft. Recent work has shown altered methylation at a specific retrotransposon insertion downstream of the Wnt9b locus in clefting animals, which results in decreased Wnt9b expression. RESULTS: Using a newly developed protocol that allows us to measure morphology, gene expression, and DNA methylation in the same embryo, we relate gene expression in an individual embryo directly to its three-dimensional morphology for the first time. We find that methylation at the retrotransposon relates to Wnt9b expression and morphology. IAP methylation relates to shape of the nasal process in a manner consistent with clefting. Embryos with low IAP methylation exhibit increased among-individual variance in facial shape. CONCLUSIONS: Methylation and gene expression relate nonlinearly to nasal process morphology. Individuals at one end of a continuum of phenotypic states display a clinical phenotype and increased phenotypic variation. Variable penetrance and expressivity in this model is likely determined both by among-individual variation in methylation and changes in phenotypic robustness along the underlying liability distribution for orofacial clefting.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Variação Biológica Individual , Fenda Labial/complicações , Fenda Labial/patologia , Fissura Palatina/complicações , Fissura Palatina/patologia , Metilação de DNA , Embrião de Mamíferos , Face/embriologia , Face/patologia , Estudos de Associação Genética , Heterogeneidade Genética , Humanos , Camundongos , Camundongos Transgênicos , Palato/embriologia , Palato/patologia , Fenótipo , Retroelementos/genética , Proteínas Wnt/genética
2.
J Anat ; 227(4): 474-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26299693

RESUMO

It is essential to complete palate closure at the correct time during fetal development, otherwise a serious malformation, cleft palate, will ensue. The steps in palate formation in humans take place between the 7th and 12th week and consist of outgrowth of palatal shelves from the paired maxillary prominences, reorientation of the shelves from vertical to horizontal, apposition of the medial surfaces, formation of a bilayered seam, degradation of the seam and bridging of mesenchyme. However, in the soft palate, the mechanism of closure is unclear. In previous studies it is possible to find support for both fusion and the alternative mechanism of merging. Here we densely sample the late embryonic-early fetal period between 54 and 74 days post-conception to determine the timing and mechanism of soft palate closure. We found the epithelial seam extends throughout the soft palates of 57-day specimens. Cytokeratin antibody staining detected the medial edge epithelium and distinguished clearly that cells in the midline retained their epithelial character. Compared with the hard palate, the epithelium is more rapidly degraded in the soft palate and only persists in the most posterior regions at 64 days. Our results are consistent with the soft palate following a developmentally more rapid program of fusion than the hard palate. Importantly, the two regions of the palate appear to be independently regulated and have their own internal clocks regulating the timing of seam removal. Considering data from human genetic and mouse studies, distinct anterior-posterior signaling mechanisms are likely to be at play in the human fetal palate.


Assuntos
Feto/embriologia , Morfogênese/fisiologia , Palato Mole/embriologia , Epitélio/embriologia , Humanos , Mesoderma/embriologia , Estudos Retrospectivos
3.
J Anat ; 213(6): 646-62, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19094181

RESUMO

The length of the face represents an important axis of variation in mammals and especially in primates. Mice with mutations that produce variation along this axis present an opportunity to study the developmental factors that may underlie evolutionary change in facial length. The Crf4 mutant, obtained from the C57BL/6J (wt/wt) background by chemical mutagenesis by the Baylor Mouse Mutagenesis Resource, is reported to have a short-faced phenotype. As an initial step towards developing this model, we performed 3D geometric morphometric comparisons of Crf4 mice to C57BL/6J wild-type mice focusing on three stages of face development and morphology--embryonic (GD 9.5-12), neonatal, and adult. Morphometric analysis of adult Crf4 mutants revealed that in addition to a shortened face, these mice exhibit a significant reduction in brain size and basicranial length. These same features also differ at the neonatal stage. During embryonic face formation, only dimensions related to brain growth were smaller, whereas the Crf4 face actually appeared advanced relative to the wild-type at the same somite stage. These results show that aspects of the Crf4 phenotype are evident as early as embryonic face formation. Based on our anatomical findings we hypothesize that the reduction in facial growth in Crf4 mice is a secondary consequence of reduction in the growth of the brain. If correct, the Crf4 mutant will be a useful model for studying the role of epigenetic interactions between the brain and face in the evolutionary developmental biology of the mammalian craniofacial complex as well as human craniofacial dysmorphology.


Assuntos
Encéfalo/embriologia , Anormalidades Craniofaciais/embriologia , Face/embriologia , Animais , Animais Recém-Nascidos/anatomia & histologia , Epigênese Genética , Ossos Faciais/embriologia , Feminino , Desenvolvimento Fetal/fisiologia , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fenótipo , Tomografia Computadorizada por Raios X
4.
Dev Biol ; 319(1): 132-45, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18456251

RESUMO

Here we take the first look at cellular dynamics and molecular signaling in the developing snake dentition. We found that tooth formation differs from rodents in several respects. The majority of snake teeth bud off of a deep, ribbon-like dental lamina rather than as separate tooth germs. Prior to and after dental lamina ingrowth, we observe asymmetries in cell proliferation and extracellular matrix distribution suggesting that localized signaling by a secreted protein is involved. We cloned Sonic hedgehog from the African rock python Python sebae and traced its expression in the species as well as in two other snakes, the closely-related Python regius and the more derived corn snake Elaphe guttata (Colubridae). We found that expression of Shh is first confined to the odontogenic band and defines the position of the future dental lamina. Shh transcripts in pythons are progressively restricted to the oral epithelium on one side of the dental lamina and remain in this position throughout the prehatching period. Shh is expressed in the inner enamel epithelium and the stellate reticulum of the tooth anlagen, but is absent from the outer enamel epithelium and its derivative, the successional lamina. This suggests that signals other than Shh are responsible for replacement tooth formation. Functional studies using cyclopamine to block Hh signaling during odontogenesis prevented initiation and extension of the dental lamina into the mesenchyme, and also affected the directionality of this process. Further, blocking Hh signaling led to disruptions of the inner enamel epithelium. To explore the role of Shh in lamina extension, we looked at its expression in the premaxillary teeth, which form closer to the oral surface than elsewhere in the mouth. Oral ectodermal Shh expression in premaxillary teeth is lost soon after the teeth form reinforcing the idea that Shh is controlling the depth of the dental lamina. In summary, we have found diverse roles for Shh in patterning the snake dentition but, have excluded the participation of this signal in replacement tooth formation.


Assuntos
Boidae/embriologia , Proteínas Hedgehog/metabolismo , Odontogênese , Transdução de Sinais , Serpentes/embriologia , Animais , Boidae/metabolismo , Técnicas In Vitro , Arcada Osseodentária/embriologia , Arcada Osseodentária/metabolismo , Serpentes/metabolismo , Dente/embriologia
5.
J Anat ; 212(2): 135-43, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18093101

RESUMO

Cleft lip and palate (CL/P), as is true of many craniofacial malformations in humans, is etiologically complex and highly variable in expression. A/WySn mice are an intriguing model for human CL/P because they develop this dysmorphology with a variable expression pattern, incomplete penetrance and frequent unilateral expression on a homogeneous genetic background. The developmental basis for this variation in expression is unknown, but of great significance for understanding such expression patterns in humans. As a step towards this goal, this study used three-dimensional geometric morphometric and novel high throughput morphometric techniques based on three-dimensional computed microtomography of mouse embryos to analyze craniofacial shape variation during primary palate formation. Our analysis confirmed previous findings based on two-dimensional analyses that the midface in A/WySn embryos, and the maxillary prominence in particular, is relatively reduced in size and appears to be developmentally delayed. In addition, we find that shape variance is increased in A/WySn embryos during primary palate formation compared to both C57BL/6J mice and the F1 crosses between these strains. If the reduction in midfacial growth caused by the Wnt9b hypomorphic mutation pushes A/WySn mice closer on average to the threshold for cleft lip formation, the elevated shape variance may explain why some, but not all, embryos develop the dysmorphology in a genetically homogeneous inbred line of mice.


Assuntos
Fenda Labial/embriologia , Fissura Palatina/embriologia , Anormalidades Craniofaciais/embriologia , Animais , Modelos Animais de Doenças , Desenvolvimento Embrionário , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Estatística como Assunto , Tomógrafos Computadorizados
6.
Zoology (Jena) ; 110(3): 231-51, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17499982

RESUMO

This study explores the microscopic craniofacial morphogenesis of the oviparous African rock python (Python sebae) spanning the first two-thirds of the post-oviposition period. At the time of laying, the python embryo consists of largely undifferentiated mesenchyme and epithelium with the exception of the cranial base and trabeculae cranii, which are undergoing chondrogenesis. The facial prominences are well defined and are at a late stage, close to the time when lip fusion begins. Later (11-12d), specializations in the epithelia begin to differentiate (vomeronasal and olfactory epithelia, teeth). Dental development in snakes is different from that of mammals in several aspects including an extended dental lamina with the capacity to form 4 sets of generational teeth. In addition, the ophidian olfactory system is very different from the mammalian. There is a large vomeronasal organ, a nasal cavity proper and an extraconchal space. All of these areas are lined with a greatly expanded olfactory epithelium. Intramembranous bone differentiation is taking place at stage 3 with some bones already ossifying whereas most are only represented as mesenchymal condensations. In addition to routine histological staining, PCNA immunohistochemistry reveals relatively higher levels of proliferation in the extending dental laminae, in osseous mesenchymal condensations and in the olfactory epithelia. Areas undergoing apoptosis were noted in the enamel organs of the teeth and osseous mesenchymal condensations. We propose that localized apoptosis helps to divide a single condensation into multiple ossification centres and this is a mechanism whereby novel morphology can be selected in response to evolutionary pressures. Several additional differences in head morphology between snakes and other amniotes were noted including a palatal groove separating the inner and outer row of teeth in the upper jaw, a tracheal opening within the tongue and a pharyngeal adhesion that closes off the pharynx from the oral cavity between stages 1 and 4. Our studies on these and other differences in the python will provide valuable insights into in developmental, molecular and evolutionary mechanisms of patterning.


Assuntos
Apoptose/fisiologia , Boidae/embriologia , Crânio/citologia , Crânio/embriologia , Animais , Proliferação de Células
7.
Anat Rec (Hoboken) ; 290(1): 123-39, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17441205

RESUMO

Cleft lip (CL) with or without cleft palate (CL[P]) has a complex etiology but is thought to be due to either genetic or environmentally induced disruptions of developmental processes affecting the shape and size of the facial prominences (medial nasal, lateral nasal, and maxilla). Recent advances in landmark-based morphometrics enable a rigorous reanalysis of phenotypic shape variation associated with facial clefting. Here we use geometric morphometric (GM) tools to characterize embryonic shape variation in the midface and head of six strains of mice that are both cleft-liable (A, A/WySn, CL/Fr) and normal (BALB/cBy, C57BL, CD1). Data were comprised of two-dimensional landmarks taken from frontal and lateral photographs of embryos spanning the time period in which the facial prominences fuse (GD10-12). Results indicate that A/- strain mice, and particularly A/WySn, have overall smaller midfaces compared to other strains. The A/WySn strain also has significant differences in facial shape related to retarded development. Overall, CL/Fr strain mice are normal-sized, but tend to have undersized maxillary prominences that do not project anteriorly and have a small nasal contact area. These results suggest that the etiology of clefting differs in A/WySn and CL/Fr strains, with the former strain suffering disruptions to developmental processes affecting overall size (e.g., neural crest migration deficiencies and lower mitotic activity), while the latter strain has defects restricted to the shape and size of the maxilla. A combination of molecular experimentation and phenotypic analysis of shape is required to test these hypotheses further.


Assuntos
Fenda Labial/etiologia , Face/embriologia , Morfogênese/fisiologia , Animais , Fenda Labial/patologia , Fissura Palatina/etiologia , Fissura Palatina/patologia , Desenvolvimento Embrionário , Face/patologia , Matemática , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...