Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1050411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531402

RESUMO

Seed aging during storage results in loss of vigor and germination ability due to the accumulation of damage by oxidation reactions. Experimental aging tests, for instance to study genetic variation, aim to mimic natural aging in a shorter timeframe. As the oxidation rate is increased by elevating the temperature, moisture, and oxygen levels, this study aimed to (1) investigate the effect of experimental rice seed aging by an elevated partial pressure of oxygen (EPPO), (2) elucidate the mechanism of dry-EPPO aging and (3) compare aging under dry-EPPO conditions to aging under traditional moist-controlled deterioration (CD) conditions and to long-term ambient storage. Dry seeds from 20 diverse rice accessions were experimentally aged under EPPO (200 times higher oxygen levels), at 50% relative humidity (RH), along with storage under high-pressure nitrogen gas and ambient conditions as controls. While no decline in germination was observed with ambient storage, there was significant aging of the rice seeds under EPPO storage, with considerable variation in the aging rate among the accessions, with an average decline toward 50% survival obtained after around 21 days in EPPO storage and total loss of germination after 56 days. Storage under high-pressure nitrogen gas resulted in a small but significant decline, by an average of 5% germination after 56 days. In a second experiment, seven rice seed lots were stored under EPPO as compared to a moist-CD test and two different long-term ambient storage conditions, i.e., conditioned warehouse seed storage (CWSS) and traditional rice seed storage (TRSS). Untargeted metabolomics (with identification of lipid and volatile compounds profiles) showed a relatively high increase in levels of oxidized lipids and related volatiles under all four storage conditions. These compounds had a high negative correlation with seed viability, indicating oxidation as a main deteriorating process during seed aging. Correlation analysis indicated that EPPO storage at 50% RH is more related to aging under TRSS at 60% and CD-aging at 75% ERH rather than CWSS at 40% ERH. In conclusion, aging rice seeds under EPPO conditions is a suitable experimental aging method for analyzing variation among seed lots or genotypes for longevity under storage.

2.
Metabolites ; 12(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36557232

RESUMO

Trained sensory panels are regularly used to rate food products but do not allow for data-driven approaches to steer food product development. This study evaluated the potential of a molecular-based strategy by analyzing 27 tomato soups that were enhanced with yeast-derived flavor products using a sensory panel as well as LC-MS and GC-MS profiling. These data sets were used to build prediction models for 26 different sensory attributes using partial least squares analysis. We found driving separation factors between the tomato soups and metabolites predicting different flavors. Many metabolites were putatively identified as dipeptides and sulfur-containing modified amino acids, which are scientifically described as related to umami or having "garlic-like" and "onion-like" attributes. Proposed identities of high-impact sensory markers (methionyl-proline and asparagine-leucine) were verified using MS/MS. The overall results highlighted the strength of combining sensory data and metabolomics platforms to find new information related to flavor perception in a complex food matrix.

3.
PLoS Genet ; 18(5): e1009957, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35594298

RESUMO

Phenotypic heterogeneity of microbial populations can facilitate survival in dynamic environments by generating sub-populations of cells that may have differential fitness in a future environment. Bacillus subtilis cultures experiencing nutrient limitation contain distinct sub-populations of cells exhibiting either comparatively high or low protein synthesis activity. This heterogeneity requires the production of phosphorylated guanosine nucleotides (pp)pGpp by three synthases: SasA, SasB, and RelA. Here we show that these enzymes differentially affect this bimodality: RelA and SasB are necessary to generate the sub-population of cells exhibiting low protein synthesis whereas SasA is necessary to generate cells exhibiting comparatively higher protein synthesis. Previously, it was reported that a RelA product allosterically activates SasB and we find that a SasA product competitively inhibits this activation. Finally, we provide in vivo evidence that this antagonistic interaction mediates the observed heterogeneity in protein synthesis. This work therefore identifies the mechanism underlying phenotypic heterogeneity in protein synthesis.


Assuntos
Regulação Bacteriana da Expressão Gênica , Nucleotídeos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Guanosina/metabolismo , Nucleotídeos/metabolismo , Nutrientes
4.
Metabolomics ; 17(9): 77, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34435244

RESUMO

INTRODUCTION: The relationship between the chemical composition of food products and their sensory profile is a complex association confronting many challenges. However, new untargeted methodologies are helping correlate metabolites with sensory characteristics in a simpler manner. Nevertheless, in the pilot phase of a project, where only a small set of products are used to explore the relationships, choices have to be made about the most appropriate untargeted metabolomics methodology. OBJECTIVE: To provide a framework for selecting a metabolite-sensory methodology based on: the quality of measurements, the relevance of the detected metabolites in terms of distinguishing between products or in terms of whether they can be related to the sensory attributes of the products. METHODS: In this paper we introduce a systematic approach to explore all these different aspects driving the choice for the most appropriate metabolomics method. RESULTS: As an example we have used a tomato soup project where the choice between two sampling methods (SPME and SBSE) had to be made. The results are not always consistently pointing to the same method as being the best. SPME was able to detect metabolites with a better precision, SBSE seemed to be able to provide a better distinction between the soups. CONCLUSION: The three levels of comparison provide information on how the methods could perform in a follow up study and will help the researcher to make a final selection for the most appropriate method based on their strengths and weaknesses.


Assuntos
Metabolômica , Seguimentos
5.
Food Res Int ; 144: 110348, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34053541

RESUMO

Fermented soy sauce is used worldwide to enhance the flavour of many dishes. Many types of soy sauce are on the market, and their differences are mostly related to the country of origin, the production process applied and the ratio of ingredients used. Consequently, several aromas, tastes, colours, and textures are obtained. Nowadays, soy sauce can also be produced without microorganisms making the process shorter and cheaper. However, flavour may be lost. We have carried out a comprehensive metabolomics analysis of volatile compounds using stir bar sorptive extraction (SBSE)-GC-MS to relate differences in volatile content to production history and origin. The results revealed major differences between fermented and non-fermented soy sauces, and a list of volatile compounds is reported as being characteristic of each type. This study was able to relate volatiles to the production process using SBSE-GC-MS and to aroma characteristics using GC-O-MS.


Assuntos
Alimentos de Soja , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Compostos Orgânicos , Alimentos de Soja/análise , Paladar
6.
J Agric Food Chem ; 68(42): 11612-11630, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32880168

RESUMO

Soy sauce is a fermented product, and its flavor is a complex mixture of individual senses which, in combination, create a strong palatable condiment for many Eastern and Western dishes. This Review focuses on our existing knowledge of the chemical compounds present in soy sauce and their potential relevance to the flavor profile. Taste is dominated by umami and salty sensations. Free amino acids, nucleotides, and small peptides are among the most important taste-active compounds. Aroma is characterized by caramel-like, floral, smoky, malty, and cooked potato-like odors. Aroma-active volatiles are chemically diverse including acids, alcohols, aldehydes, esters, furanones, pyrazines, and S-compounds. The origin of all compounds relates to both the raw ingredients and starter cultures used as well as the parameters applied during production. We are only just starting to help develop innovative studies where we can combine different analytical platforms and chemometric analysis to link flavor attributes to chemical composition.


Assuntos
Aromatizantes/química , Alimentos de Soja/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Odorantes/análise , Paladar
7.
Proc Natl Acad Sci U S A ; 117(27): 15565-15572, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576694

RESUMO

Many bacteria exist in a state of metabolic quiescence where energy consumption must be minimized so as to maximize available resources over a potentially extended period of time. As protein synthesis is the most energy intensive metabolic process in a bacterial cell, it would be an appropriate target for down-regulation during the transition from growth to quiescence. We observe that when Bacillus subtilis exits rapid growth, a subpopulation of cells emerges with very low protein synthetic activity. This phenotypic heterogeneity requires the production of the nucleotides (p)ppGpp, which we show are sufficient to inhibit protein synthesis in vivo. We then show that one of these molecules, ppGpp, inhibits protein synthesis by preventing the allosteric activation of the essential GTPase Initiation Factor 2 (IF2) during translation initiation. Finally, we demonstrate that the observed attenuation of protein synthesis during the entry into quiescence is a consequence of the direct interaction of (p)ppGpp and IF2.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 2 em Procariotos/metabolismo , Regulação Alostérica , Divisão Celular
8.
J Chromatogr A ; 1624: 461191, 2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32540059

RESUMO

Trapping volatiles is a convenient way to study aroma compounds but it is important to determine which volatile trapping method is most comprehensive in extracting the most relevant aroma components when investigating complex food products. Awareness of their limitations is also crucial. (Un)targeted metabolomic approaches were used to determine the volatile profiles of two commercial flavourings. Four trapping techniques were tested as was the addition of salt to the mixture. Comprehensiveness and repeatability were compared and SBSE proved particularly suitable for extracting components such as polysulfides, pyrazines and terpene alcohols, and provided an overall broader chemical spectrum. SPME proved to be more suitable in extracting sesquiterpenes and DHS in extracting monoterpenes. Adding salt to the sample had only quantitative effects on volatiles as detected by SPME. These results help clarify the advantages and limitations of different trapping techniques and hence deliver a valuable decision tool for food matrix analysis.


Assuntos
Aromatizantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Aromatizantes/química , Aromatizantes/isolamento & purificação , Metabolômica , Monoterpenos/isolamento & purificação , Odorantes , Pirazinas/isolamento & purificação , Sesquiterpenos/isolamento & purificação , Microextração em Fase Sólida/métodos , Sulfetos/isolamento & purificação , Terpenos/isolamento & purificação , Compostos Orgânicos Voláteis/análise
9.
Metabolomics ; 15(3): 41, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30868334

RESUMO

BACKGROUND: When foods are processed or cooked, many chemical reactions occur involving a wide range of metabolites including sugars, amino acids and lipids. These chemical processes often lead to the formation of volatile aroma compounds that can make food tastier or may introduce off-flavours. Metabolomics tools are only now being used to study the formation of these flavour compounds in order to understand better the beneficial and less beneficial aspects of food processing. AIM OF REVIEW: To provide a critical overview of the diverse MS-based studies carried out in recent years in food metabolomics and to review some biochemical properties and flavour characteristics of the different groups of aroma-related metabolites. A description of volatiles from processed foods, and their relevant chemical and sensorial characteristics is provided. In addition, this review also summarizes the formation of the flavour compounds from their precursors, and the interconnections between Maillard reactions and the amino acid, lipid, and carbohydrate degradation pathways. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review provides new insights into processed ingredients and describes how metabolomics will help to enable us to produce, preserve, design and distribute higher-quality foods for health promotion and better flavour.


Assuntos
Manipulação de Alimentos/métodos , Qualidade dos Alimentos , Metabolômica/métodos , Aminoácidos/metabolismo , Aromatizantes , Alimentos , Análise de Alimentos/métodos , Reação de Maillard , Espectrometria de Massas/métodos , Odorantes/análise , Paladar , Volatilização
10.
Methods Mol Biol ; 1778: 253-267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761444

RESUMO

There is increasing demand to bring the level of metabolomics analyses down to the tissue or cell level. Significant progress has been made involving the use of in situ metabolomics imaging techniques where no tissue collection or extraction is needed prior to analysis. In this chapter we describe a relatively new method which is simple and easy to use. No ectopic matrix or vacuum is required, and analyses are performed with living plant materials directly from (or even still attached to) the plant. Although relatively straightforward, there are still a few caveats as regards this method which are described at the end of the chapter.


Assuntos
Metabolômica/métodos , Plantas/química , Plantas/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
New Phytol ; 219(1): 297-309, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29655242

RESUMO

Strigolactones (SLs) are rhizosphere signalling molecules exuded by plants that induce seed germination of root parasitic weeds and hyphal branching of arbuscular mycorrhiza. They are also phytohormones regulating plant architecture. MORE AXILLARY GROWTH 1 (MAX1) and its homologs encode cytochrome P450 (CYP) enzymes that catalyse the conversion of the strigolactone precursor carlactone to canonical strigolactones in rice (Oryza sativa), and to an SL-like compound in Arabidopsis. Here, we characterized the tomato (Solanum lycopersicum) MAX1 homolog, SlMAX1. The targeting induced local lesions in genomes method was used to obtain Slmax1 mutants that exhibit strongly reduced production of orobanchol, solanacol and didehydro-orobanchol (DDH) isomers. This results in a severe strigolactone mutant phenotype in vegetative and reproductive development. Transient expression of SlMAX1 - together with SlD27, SlCCD7 and SlCCD8 - in Nicotiana benthamiana showed that SlMAX1 catalyses the formation of carlactonoic acid from carlactone. Plant feeding assays showed that carlactone, but not 4-deoxy-orobanchol, is the precursor of orobanchol, which in turn is the precursor of solanacol and two of the three DDH isomers. Inhibitor studies suggest that a 2-oxoglutarate-dependent dioxygenase is involved in orobanchol biosynthesis from carlactone and that the formation of solanacol and DDH isomers from orobanchol is catalysed by CYPs.


Assuntos
Lactonas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Mutação , Fosfatos/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Nicotiana/genética
12.
Food Res Int ; 106: 129-135, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29579910

RESUMO

The effect of the addition of inulin (5 and 10%) on the phenolic content and in vitro gastrointestinal digestion of tomato sauces has been investigated. Results have shown that the addition of inulin to tomato sauce significantly decreased the total phenolic content (57-68%), total flavonoid content (48-60%), and total antioxidant capacity (49-61%). Similarly, all assays of the sauce containing both 5% and 10% inulin, showed a slight decrease during in vitro gastrointestinal digestion of tomato sauces. Higher levels of inulin added to tomato sauce resulted in the greatest decrease in phenolic content, probably because of the interaction between inulin and phenolic compounds. To address the effects of inulin on the global metabolite profile of tomato sauce, an untargeted metabolomics approach was followed. Changes related to the presence of inulin suggest that inulin quenches a subset of unidentified compounds which are present in sauce but not in fruit, suggesting that inulin can contribute to the conservation of fruit properties in tomato sauce.


Assuntos
Fibras na Dieta , Manipulação de Alimentos/métodos , Frutas/química , Inulina , Fenóis/análise , Solanum lycopersicum/química , Antioxidantes/análise , Disponibilidade Biológica , Flavonoides/análise , Humanos , Metabolômica
13.
Curr Microbiol ; 70(6): 854-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25773204

RESUMO

Bacteriophage Cr30 has proven useful for the transduction of Caulobacter crescentus. Nucleotide sequencing of Cr30 DNA revealed that the Cr30 genome consists of 155,997 bp of DNA that codes for 287 proteins and five tRNAs. In contrast to the 67 % GC content of the host genome, the GC content of the Cr30 genome is only 38 %. This lower GC content causes both the codon usage pattern and the amino acid composition of the Cr30 proteins to be quite different from those of the host bacteria. As a consequence, the Cr30 mRNAs probably are translated at a rate that is slower than the normal rate for host mRNAs. A phylogenetic comparison of the genome indicates that Cr30 is a member of the T4-like family that is most closely related to a new group of T-like phages exemplified by фM12.


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Caulobacter crescentus/virologia , Myoviridae/genética , Myoviridae/isolamento & purificação , Bacteriófago T4/genética , Composição de Bases , DNA Viral/química , DNA Viral/genética , Ordem dos Genes , Dados de Sequência Molecular , Filogenia , RNA de Transferência/genética , Análise de Sequência de DNA , Homologia de Sequência , Sintenia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...