Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(1): 46, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218945

RESUMO

Entosis is a process that leads to the formation of cell-in-cell structures commonly found in cancers. Here, we identified entosis in hepatocellular carcinoma and the loss of Rnd3 (also known as RhoE) as an efficient inducer of this mechanism. We characterized the different stages and the molecular regulators of entosis induced after Rnd3 silencing. We demonstrated that this process depends on the RhoA/ROCK pathway, but not on E-cadherin. The proteomic profiling of entotic cells allowed us to identify LAMP1 as a protein upregulated by Rnd3 silencing and implicated not only in the degradation final stage of entosis, but also in the full mechanism. Moreover, we found a positive correlation between the presence of entotic cells and the metastatic potential of tumors in human patient samples. Altogether, these data suggest the involvement of entosis in liver tumor progression and highlight a new perspective for entosis analysis in medicine research as a novel therapeutic target.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Entose , Proteômica , Fatores de Transcrição , Proteínas rho de Ligação ao GTP , Proteína 1 de Membrana Associada ao Lisossomo
2.
JHEP Rep ; 5(5): 100691, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153687

RESUMO

Background & Aims: ß-catenin is a well-known effector of the Wnt pathway, and a key player in cadherin-mediated cell adhesion. Oncogenic mutations of ß-catenin are very frequent in paediatric liver primary tumours. Those mutations are mostly heterozygous, which allows the co-expression of wild-type (WT) and mutated ß-catenins in tumour cells. We investigated the interplay between WT and mutated ß-catenins in liver tumour cells, and searched for new actors of the ß-catenin pathway. Methods: Using an RNAi strategy in ß-catenin-mutated hepatoblastoma (HB) cells, we dissociated the structural and transcriptional activities of ß-catenin, which are carried mainly by WT and mutated proteins, respectively. Their impact was characterised using transcriptomic and functional analyses. We studied mice that develop liver tumours upon activation of ß-catenin in hepatocytes (APCKO and ß-cateninΔexon3 mice). We used transcriptomic data from mouse and human HB specimens, and used immunohistochemistry to analyse samples. Results: We highlighted an antagonistic role of WT and mutated ß-catenins with regard to hepatocyte differentiation, as attested by alterations in the expression of hepatocyte markers and the formation of bile canaliculi. We characterised fascin-1 as a transcriptional target of mutated ß-catenin involved in tumour cell differentiation. Using mouse models, we found that fascin-1 is highly expressed in undifferentiated tumours. Finally, we found that fascin-1 is a specific marker of primitive cells including embryonal and blastemal cells in human HBs. Conclusions: Fascin-1 expression is linked to a loss of differentiation and polarity of hepatocytes. We present fascin-1 as a previously unrecognised factor in the modulation of hepatocyte differentiation associated with ß-catenin pathway alteration in the liver, and as a new potential target in HB. Impact and implications: The FSCN1 gene, encoding fascin-1, was reported to be a metastasis-related gene in various cancers. Herein, we uncover its expression in poor-prognosis hepatoblastomas, a paediatric liver cancer. We show that fascin-1 expression is driven by the mutated beta-catenin in liver tumour cells. We provide new insights on the impact of fascin-1 expression on tumour cell differentiation. We highlight fascin-1 as a marker of immature cells in mouse and human hepatoblastomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...