Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 331(6022): 1328-32, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21393545

RESUMO

DNA topoisomerase II completely removes DNA intertwining, or catenation, between sister chromatids before they are segregated during cell division. How this occurs throughout the genome is poorly understood. We demonstrate that in yeast, centromeric plasmids undergo a dramatic change in their topology as the cells pass through mitosis. This change is characterized by positive supercoiling of the DNA and requires mitotic spindles and the condensin factor Smc2. When mitotic positive supercoiling occurs on decatenated DNA, it is rapidly relaxed by topoisomerase II. However, when positive supercoiling takes place in catenated plasmid, topoisomerase II activity is directed toward decatenation of the molecules before relaxation. Thus, a topological change on DNA drives topoisomerase II to decatenate molecules during mitosis, potentially driving the full decatenation of the genome.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA Catenado/química , DNA Fúngico/química , DNA Super-Helicoidal/química , Mitose , Ciclo Celular , Segregação de Cromossomos , Replicação do DNA , DNA Catenado/metabolismo , DNA Fúngico/metabolismo , DNA Super-Helicoidal/metabolismo , Dimerização , Conformação de Ácido Nucleico , Plasmídeos , Saccharomyces cerevisiae , Fuso Acromático/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-21502406

RESUMO

The large genomes of eukaryotic cells are replicated from multiple replication origins during S phase of the cell cycle. These origins are not activated synchronously at the beginning of S phase but, instead, fire throughout S phase according to a predetermined, cell-type-specific program. Ensuring that each origin is efficiently activated once and only once during each S phase is crucial for maintaining the integrity of the genome. This is achieved by a two-step mechanism. The first step, licensing, involves the loading of the Mcm2-7 proteins into pre-replicative complexes (pre-RCs) at origins by ORC, Cdc6, and Cdt1. Pre-RCs can only assemble at origins during G(1) phase, when cyclin-dependent kinase (CDK) activity is low because CDKs inhibit each pre-RC component individually. CDKs trigger initiation by phosphorylating two essential proteins, Sld2 and Sld3. A second protein kinase, Cdc7, along with its regulatory subunit, Dbf4, is also required for initiation. In response to DNA damage, origin firing is inhibited by a third protein kinase, Rad53, which phosphorylates and inhibits Sld3 and Dbf4. In this chapter, I describe these regulatory mechanisms in detail and explore the role of redundancy in the regulation of DNA replication, focusing on the budding yeast, Saccharomyces cerevisiae.


Assuntos
Replicação do DNA , Saccharomyces cerevisiae/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Dano ao DNA , Modelos Biológicos , Origem de Replicação , Saccharomyces cerevisiae/enzimologia
3.
Mol Biol Cell ; 12(11): 3658-67, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11694596

RESUMO

A prereplicative complex (pre-RC) of proteins is assembled at budding yeast origins of DNA replication during the G1-phase of the cell cycle, as shown by genomic footprinting. The proteins responsible for this prereplicative footprint have yet to be identified but are likely to be involved in the earliest stages of the initiation step of chromosome replication. Here we show that MCM2-7 proteins are essential for both the formation and maintenance of the pre-RC footprint at the origin ARS305. It is likely that pre-RCs contain heteromeric complexes of MCM2-7 proteins, since degradation of Mcm2, 3, 6, or 7 during G1-phase, after pre-RC formation, causes loss of Mcm4 from the nucleus. It has been suggested that pre-RCs on unreplicated chromatin may generate a checkpoint signal that inhibits premature mitosis during S-phase. We show that, although mitosis does indeed occur in the absence of replication if MCM proteins are degraded during G1-phase, anaphase is prevented if MCMs are degraded during S-phase. Our data indicate that pre-RCs do not play a direct role in checkpoint control during chromosome replication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona , Cromossomos Fúngicos , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Fase G1 , Componente 4 do Complexo de Manutenção de Minicromossomo , Componente 6 do Complexo de Manutenção de Minicromossomo , Componente 7 do Complexo de Manutenção de Minicromossomo , Mitose/fisiologia , Proteínas Nucleares/genética , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe
4.
Nat Cell Biol ; 3(11): 958-65, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11715016

RESUMO

Cells experiencing DNA replication stress activate a response pathway that delays entry into mitosis and promotes DNA repair and completion of DNA replication. The protein kinases ScRad53 and SpCds1 (in baker's and fission yeast, respectively) are central to this pathway. We describe a conserved protein Mrc1, mediator of the replication checkpoint, required for activation of ScRad53 and SpCds1 during replication stress. mrc1 mutants are sensitive to hydroxyurea and have a checkpoint defect similar to rad53 and cds1 mutants. Mrc1 may be the replicative counterpart of Rad9 and Crb2, which are required for activating ScRad53 and Chk1 in response to DNA damage.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , Proteínas Fúngicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Ativação Enzimática , Proteínas Fúngicas/genética , Genes Fúngicos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteínas Quinases/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe
5.
EMBO J ; 20(17): 4836-45, 2001 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-11532947

RESUMO

The Cdc6 DNA replication initiation factor is targeted for ubiquitin-mediated proteolysis by the E3 ubiquitin ligase SCF(CDC4) from the end of G1phase until mitosis in the budding yeast Saccharomyces cerevisiae. Here we describe a dominant-negative CDC6 mutant that, when overexpressed, arrests the cell cycle by inhibiting cyclin-dependent kinases (CDKs) and, thus, prevents passage through mitosis. This mutant protein inhibits CDKs more efficiently than wild-type Cdc6, in part because it is completely refractory to SCF(CDC4)-mediated proteolysis late in the cell cycle and consequently accumulates to high levels. The mutation responsible for this phenotype destroys a putative CDK phosphorylation site near the middle of the Cdc6 primary amino acid sequence. We show that this site lies within a novel Cdc4-interacting domain distinct from a Cdc4-interacting site identified previously near the N-terminus of the protein. We show that both sites can target Cdc6 for proteolysis in late G1/early S phase whilst only the newly identified site can target Cdc6 for proteolysis during mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas F-Box , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Ubiquitina-Proteína Ligases , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Quinases Ciclina-Dependentes/metabolismo , Primers do DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Genótipo , Glucose/metabolismo , Mitose/fisiologia , Nocodazol/farmacologia , Fosforilação , Regiões Promotoras Genéticas , Fase S/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Supressão Genética
6.
EMBO J ; 20(16): 4588-602, 2001 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-11500385

RESUMO

Epstein-Barr virus (EBV) replicates in its latent phase once per cell cycle in proliferating B cells. The latent origin of DNA replication, oriP, supports replication and stable maintenance of the EBV genome. OriP comprises two essential elements: the dyad symmetry (DS) and the family of repeats (FR), both containing clusters of binding sites for the transactivator EBNA1. The DS element appears to be the functional replicator. It is not yet understood how oriP-dependent replication is integrated into the cell cycle and how EBNA1 acts at the molecular level. Using chromatin immunoprecipitation experiments, we show that the human origin recognition complex (hsORC) binds at or near the DS element. The association of hsORC with oriP depends on the DS element. Deletion of this element not only abolishes hsORC binding but also reduces replication initiation at oriP to background level. Co-immunoprecipitation experiments indicate that EBNA1 is associated with hsORC in vivo. These results indicate that oriP might use the same cellular initiation factors that regulate chromosomal replication, and that EBNA1 may be involved in recruiting hsORC to oriP.


Assuntos
Replicação do DNA , DNA Viral/biossíntese , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 4/genética , Origem de Replicação , Latência Viral , Replicação Viral , Animais , Linfócitos B , Sítios de Ligação , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , Humanos , Complexo de Reconhecimento de Origem , Ratos
7.
Nature ; 412(6846): 553-7, 2001 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-11484057

RESUMO

The checkpoint kinase proteins Mec1 and Rad53 are required in the budding yeast, Saccharomyces cerevisiae, to maintain cell viability in the presence of drugs causing damage to DNA or arrest of DNA replication forks. It is thought that they act by inhibiting cell cycle progression, allowing time for DNA repair to take place. Mec1 and Rad53 also slow S phase progression in response to DNA alkylation, although the mechanism for this and its relative importance in protecting cells from DNA damage have not been determined. Here we show that the DNA-alkylating agent methyl methanesulphonate (MMS) profoundly reduces the rate of DNA replication fork progression; however, this moderation does not require Rad53 or Mec1. The accelerated S phase in checkpoint mutants, therefore, is primarily a consequence of inappropriate initiation events. Wild-type cells ultimately complete DNA replication in the presence of MMS. In contrast, replication forks in checkpoint mutants collapse irreversibly at high rates. Moreover, the cytotoxicity of MMS in checkpoint mutants occurs specifically when cells are allowed to enter S phase with DNA damage. Thus, preventing damage-induced DNA replication fork catastrophe seems to be a primary mechanism by which checkpoints preserve viability in the face of DNA alkylation.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas Fúngicas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alquilantes/toxicidade , Ciclo Celular/genética , Ciclo Celular/fisiologia , Quinase do Ponto de Checagem 2 , Cromossomos Fúngicos , Replicação do DNA/efeitos dos fármacos , DNA Fúngico/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular , Metanossulfonato de Metila/toxicidade , Mutação , Fase S/fisiologia , Saccharomyces cerevisiae/fisiologia
8.
J Mol Biol ; 308(4): 597-608, 2001 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-11350163

RESUMO

The Cdc6 protein is required to load a complex of Mcm2-7 family members (the MCM complex) into prereplicative complexes at budding yeast origins of DNA replication. Cdc6p is a member of the AAA(+) superfamily of proteins, which includes the prokaryotic and eukaryotic clamp loading proteins. These proteins share a number of conserved regions of homology and a common three-dimensional architecture. Two of the conserved sequence motifs are the Walker A and B motifs that are involved in nucleotide metabolism and are essential for Cdc6p function in vivo. Here, we analyse mutants in the other conserved sequence motifs. Several of these mutants are temperature-sensitive for growth and are unable to recruit the MCM complex to chromatin at the restrictive temperature. In one such temperature-sensitive mutant, a highly conserved asparagine residue in the sensor I motif was changed to alanine. Overexpression of this mutant protein is lethal. This phenotype is very similar to the phenotype previously described for a mutation in the Walker B motif, suggesting a common role for sensor I and the Walker B motif in Cdc6 function.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Sequência Conservada/genética , Mutação/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Proteínas de Ciclo Celular/genética , Divisão Celular , Cromatina/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Dominantes/genética , Genes Letais/genética , Componente 7 do Complexo de Manutenção de Minicromossomo , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fenótipo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Temperatura
9.
Curr Biol ; 11(9): R367-70, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11369250

RESUMO

A sophisticated molecular switch ensures that replication origins are activated just once in each cell cycle. Recent work reveals how the proteolysis of a key replication inhibitor, geminin, by the anaphase promoting complex/cyclosome is an important component of this switch.


Assuntos
Replicação do DNA , Animais , Quinases Ciclina-Dependentes/fisiologia , Genoma Humano , Humanos
10.
Curr Opin Genet Dev ; 11(1): 64-70, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11163153

RESUMO

The MCM2-7 complex is essential for both the initiation and elongation phases of eukaryotic chromosome replication. There is some evidence that MCM2-7 proteins may act as a DNA helicase; at the same time, a variety of other DNA helicases have also been implicated in the replication of eukaryotic chromosomes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Células Eucarióticas/metabolismo , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ligação Proteica , RecQ Helicases , Leveduras/genética , Leveduras/metabolismo
11.
Proc Natl Acad Sci U S A ; 97(26): 14115-20, 2000 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-11121019

RESUMO

The initiation of DNA replication in the budding yeast Saccharomyces cerevisiae occurs in two sequential and mutually exclusive steps. Prereplicative complexes (pre-RCs) containing origin recognition complex (ORC), Cdc6p, and the MCM2-7 proteins assemble only under conditions of low cyclin-dependent kinase (Cdk) activity during G(1), whereas origin activation is driven by the increase in Cdk activity at the end of G(1). As a first step toward the reconstitution of this two-step process in vitro, we describe a system in which extracts prepared from G(1)-arrested cells promote sequential assembly of ORC, Cdc6p, and MCM2-7 proteins onto exogenously added origin-containing DNA. This reaction requires an intact ARS consensus sequence and requires ATP for two distinct steps. Extracts from cells arrested in mitosis also can support the binding of ORC but are unable to load either Cdc6p or MCM2-7 proteins. This system should be useful for studying the mechanism and regulation of pre-RC assembly.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , DNA Fúngico , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/metabolismo , Sistema Livre de Células , Proteínas Cromossômicas não Histona , Mitose , Complexo de Reconhecimento de Origem , Saccharomyces cerevisiae/metabolismo
12.
Science ; 288(5471): 1643-7, 2000 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-10834843

RESUMO

Little is known about the DNA helicases required for the elongation phase of eukaryotic chromosome replication. Minichromosome maintenance (MCM) protein complexes have DNA helicase activity but have only been functionally implicated in initiating DNA replication. Using an improved method for constructing conditional degron mutants, we show that depletion of MCMs after initiation irreversibly blocks the progression of replication forks in Saccharomyces cerevisiae. Like the Escherichia coli dnaB and SV40 T antigen helicases, therefore, the MCM complex is loaded at origins before initiation and is essential for elongation. Restricting MCM loading to the G(1) phase ensures that initiation and elongation occur just once per cell cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Ligases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona , Cromossomos Fúngicos/metabolismo , DNA Fúngico/biossíntese , Proteínas Fúngicas/genética , Fase G1 , Fase G2 , Componente 4 do Complexo de Manutenção de Minicromossomo , Componente 6 do Complexo de Manutenção de Minicromossomo , Mitose , Mutação , Proteínas Recombinantes de Fusão/metabolismo , Replicon , Fase S , Saccharomyces cerevisiae/genética , Temperatura
13.
EMBO J ; 19(9): 2082-93, 2000 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-10790374

RESUMO

Cdc45p assembles at replication origins before initia tion and is required for origin firing in Saccharomyces cerevisiae. A heat-inducible cdc45 degron mutant was constructed that promotes rapid degradation of Cdc45p at the restrictive temperature. Consistent with a role in initiation, loss of Cdc45p in G(1) prevents all detectable DNA replication without preventing subsequent entry into mitosis. Loss of Cdc45p activity during S-phase blocks S-phase completion but not activation of replication checkpoints. Using density substitution, we show that after allowing replication fork establishment, Cdc45p inactivation prevents the subsequent progression of individual replication forks. This provides the first direct functional evidence that Cdc45p plays an essential role during elongation. Thus, like the large T antigen in SV40 replication, Cdc45p plays a central role in both initiation and elongation phases of chromosomal DNA replication.


Assuntos
Proteínas de Transporte/metabolismo , Replicação do DNA/genética , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA , Genes Essenciais/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte/genética , Cromossomos Fúngicos/efeitos dos fármacos , Cromossomos Fúngicos/genética , Replicação do DNA/efeitos dos fármacos , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidroxiureia/farmacologia , Mutação/genética , Proteínas Nucleares/genética , Fase S/efeitos dos fármacos , Temperatura , Termodinâmica , Fatores de Tempo
14.
Mol Cell ; 5(1): 85-95, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10678171

RESUMO

Passage through mitosis is required to reset replication origins for the subsequent S phase. During mitosis, a series of biochemical reactions involving cyclin-dependent kinases (CDKs), the anaphase promoting complex or cyclosome (APC/C), and a mitotic exit network including Cdc5, 14, and 15 coordinates the proper separation and segregation of sister chromatids. Here we show that cyclin B/CDK inactivation can drive origin resetting in either early S phase or mitosis. This origin resetting occurs efficiently in the absence of APC/C function and mitotic exit network function. We conclude that CDK inactivation is the single essential event in mitosis required to allow pre-RC assembly for the next cell cycle.


Assuntos
Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Ligases/fisiologia , Mitose/fisiologia , Proteínas Tirosina Fosfatases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Complexos Ubiquitina-Proteína Ligase , Ciclossomo-Complexo Promotor de Anáfase , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Genótipo , Proteínas de Ligação a RNA , Fase S , Ubiquitina-Proteína Ligases
15.
Curr Biol ; 10(5): 231-40, 2000 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-10712901

RESUMO

BACKGROUND: Cdc28p, the major cyclin-dependent kinase in budding yeast, prevents re-replication within each cell cycle by preventing the reassembly of Cdc6p-dependent pre-replicative complexes (pre-RCs) once origins have fired. Cdc6p is a rapidly degraded protein that must be synthesised in each cell cycle and is present only during the G1 phase. RESULTS: We found that, at different times in the cell cycle, there are distinct modes of Cdc6p proteolysis. Before Start, Cdc6p proteolysis did not require either the anaphase-promoting complex (APC/C) or the SCF complex, which mediate the major cell cycle regulated ubiquitination pathways, nor did it require Cdc28p activity or any of the potential Cdc28p phosphorylation sites in Cdc6p. In fact, the activation of B cyclin (Clb)-Cdc28p kinase inactivated this pathway of Cdc6p degradation later in the cell cycle. Activation of the G1 cyclins (Clns) caused Cdc6p degradation to become extremely rapid. This degradation required the SCF(CDC4) and Cdc28p consensus sites in Cdc6p, but did not require Clb5 and Clb6. Later in the cell cycle, SCF(CDC4)-dependent Cdc6p proteolysis remained active but became less rapid. CONCLUSIONS: Levels of Cdc6p are regulated in several ways by the Cdc28p cyclin-dependent kinase. The Cln-dependent elimination of Cdc6p, which does not require the S-phase-promoting cyclins Clb5 and Clb6, suggests that the ability to assemble pre-RCs is lost before, not concomitant with, origin firing.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomycetales/fisiologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Ciclina B/metabolismo , Fase G1 , Immunoblotting , Modelos Biológicos , Peptídeo Sintases/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Ligases SKP Culina F-Box , Fatores de Tempo
17.
Mol Cell Biol ; 20(1): 242-8, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10594027

RESUMO

The Dbf4p/Cdc7p protein kinase is essential for the activation of replication origins during S phase. The catalytic subunit, Cdc7p, is present at constant levels throughout the cell cycle. In contrast, we show here that the levels of the regulatory subunit, Dbf4p, oscillate during the cell cycle. Dbf4p is absent from cells during G(1) and accumulates during the S and G(2) phases. Dbf4p is rapidly degraded at the time of chromosome segregation and remains highly unstable during pre-Start G(1) phase. The rapid degradation of Dbf4p during G(1) requires a functional anaphase-promoting complex (APC). Mutation of a sequence in the N terminus of Dbf4p which resembles the cyclin destruction box eliminates this APC-dependent degradation of Dbf4p. We suggest that the coupling of Dbf4p degradation to chromosome separation may play a redundant role in ensuring that prereplicative complexes, which assemble after chromosome segregation, do not immediately refire.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Proteínas Serina-Treonina Quinases/genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae , Anáfase/genética , Regulação Fúngica da Expressão Gênica , Fosfoproteínas/genética , Saccharomyces cerevisiae
18.
Nat Cell Biol ; 1(7): 415-22, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10559985

RESUMO

Cyclin-dependent kinases (CDKs) activate the firing of replication origins during the S phase of the cell cycle. They also block re-initiation of DNA replication within a single cell cycle, by preventing the assembly of prereplicative complexes at origins. We show here that, in budding yeast, CDKs exclude the essential prereplicative-complex component Mcm4 from the nucleus. Although origin firing can be triggered by the B-type cyclins only, both G1-phase and B-type cyclins cause exit of Mcm4 from the nucleus. These results suggest that G1 cyclins may diminish the cell's capacity to assemble prereplicative complexes before B-type cyclins trigger origin firing during S phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Fase G1/fisiologia , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Replicação do DNA/genética , Replicação do DNA/fisiologia , Proteínas Fúngicas/genética , Genes Reporter/genética , Componente 4 do Complexo de Manutenção de Minicromossomo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
19.
Genes Dev ; 13(18): 2360-4, 1999 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10500092

RESUMO

Eukaryotic genomes often contain more potential replication origins than are actually used during S phase. The molecular mechanisms that prevent some origins from firing are unknown. Here we show that dormant replication origins on the left arm of budding yeast chromosome III become activated when both passive replication through them is prevented and the Mec1/Rad53 checkpoint that blocks late-origin firing is inactivated. Under these conditions, dormant origins fire very late relative to other active origins. These experiments show that some dormant replication origins are competent to fire during S phase and that passage of a replication fork through such origins can inactivate them.


Assuntos
Proteínas de Ciclo Celular , DNA Fúngico/genética , DNA Fúngico/fisiologia , Proteínas Serina-Treonina Quinases , Origem de Replicação/fisiologia , Proteínas de Saccharomyces cerevisiae , Ciclo Celular/efeitos dos fármacos , Quinase do Ponto de Checagem 2 , Pegada de DNA , Proteínas Fúngicas/genética , Genótipo , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Mutagênese , Nocodazol/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Proteínas Quinases/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fatores de Tempo
20.
Curr Biol ; 8(21): R771-3, 1998 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-9799729

RESUMO

Budding yeast replication origins are activated during S phase according to a predetermined temporal programme. Two recent studies indicate that this programme is executed, at least in part, by the S-phase-promoting cyclins that act to assemble a pre-initiation complex which includes the Cdc45 protein.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte/metabolismo , Ciclinas/fisiologia , Proteínas Fúngicas/metabolismo , Modelos Genéticos , Proteínas Nucleares/metabolismo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...