Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Aquac ; 15(2): 491-535, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504717

RESUMO

Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.

2.
Front Genet ; 13: 885932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692829

RESUMO

In the last decade, several countries have included feed efficiency (as residual feed intake; RFI) in their breeding goal. Recent studies showed that RFI is favorably correlated with methane emissions. Thus, selecting for lower emitting animals indirectly through RFI could be a short-term strategy in order to achieve the intended reduction set by the EU Commission (-55% for 2030). The objectives were to 1) estimate genetic parameters for six methane traits, including genetic correlations between methane traits, production, and feed efficiency traits, 2) evaluate the expected correlated response of methane traits when selecting for feed efficiency with or without including methane, 3) quantify the impact of reducing methane emissions in dairy cattle using the Danish Holstein population as an example. A total of 26,664 CH4 breath records from 647 Danish Holstein cows measured over 7 years in a research farm were analyzed. Records on dry matter intake (DMI), body weight (BW), and energy corrected milk (ECM) were also available. Methane traits were methane concentration (MeC, ppm), methane production (MeP; g/d), methane yield (MeY; g CH4/kg DMI), methane intensity (MeI; g CH4/kg ECM), residual methane concentration (RMeC), residual methane production (RMeP, g/d), and two definitions of residual feed intake with or without including body weight change (RFI1, RFI2). The estimated heritability of MeC was 0.20 ± 0.05 and for MeP, it was 0.21 ± 0.05, whereas heritability estimates for MeY and MeI were 0.22 ± 0.05 and 0.18 ± 0.04, and for the RMeC and RMeP, they were 0.23 ± 0.06 and 0.16 ± 0.02, respectively. Genetic correlations between methane traits ranged from moderate to highly correlated (0.48 ± 0.16-0.98 ± 0.01). Genetic correlations between methane traits and feed efficiency were all positive, ranging from 0.05 ± 0.20 (MeI-RFI2) to 0.76 ± 0.09 (MeP-RFI2). Selection index calculations showed that selecting for feed efficiency has a positive impact on reducing methane emissions' expected response, independently of the trait used (MeP, RMeP, or MeI). Nevertheless, adding a negative economic value for methane would accelerate the response and help to reach the reduction goal in fewer generations. Therefore, including methane in the breeding goal seems to be a faster way to achieve the desired methane emission reductions in dairy cattle.

3.
Foods ; 11(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407049

RESUMO

The aim of the present study was to critically evaluate the potential of using NIR and Raman spectroscopy for prediction of fatty acid features and single fatty acids in salmon muscle. The study was based on 618 homogenized salmon muscle samples acquired from Atlantic salmon representing a one year-class nucleus, fed the same high fish oil feed. NIR and Raman spectra were used to make regression models for fatty acid features and single fatty acids measured by gas chromatography. The predictive performance of both NIR and Raman was good for most fatty acids, with R2 above 0.6. Overall, Raman performed marginally better than NIR, and since the Raman models generally required fewer components than respective NIR models to reach high and optimal performance, Raman is likely more robust for measuring fatty acids compared to NIR. The fatty acids of the salmon samples co-varied to a large extent, a feature that was exacerbated by the overlapping peaks in NIR and Raman spectra. Thus, the fatty acid related variation of the spectroscopic data of the present study can be explained by only a few independent principal components. For the Raman spectra, this variation was dominated by functional groups originating from long-chain polyunsaturated FAs like EPA and DHA. By exploring the independent EPA and DHA Raman models, spectral signatures similar to the respective pure fatty acids could be seen. This proves the potential of Raman spectroscopy for single fatty acid prediction in muscle tissue.

4.
Front Genet ; 12: 696893, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790218

RESUMO

High mortality during grow out in the sea is a challenge for farmed Atlantic salmon production in Norway and globally, which is partly attributed to suboptimal smolt quality. In this study, two groups of pre-smolts were put on a standard light smoltification regime with alternating 12L:12D per day for 6 weeks (Phase I), followed by 24L:0D per day for 6 weeks (Phase II); one group was 0 + smolt (EXP1) and the other 1 + smolt (EXP2). To monitor the smoltification status of the fish, 100 (EXP1) and 60 (EXP2) fish were randomly sampled per week during Phase II. The following phenotypes for smoltification status were studied: RT-qPCR relative mRNA expression of values of two alpha catalytic subunits of the variants of the Na+K+ATPase (NKA) expressed in the sampled gill tissues of each fish. The first variant, alpha1a with increased expression in freshwater (FW) and the second variant alpha1b with increased expression in seawater variant (SW), as well as their ratio SW/FW. At the optimal time for seawater transfer based on the SW/FW trait, 1,000 (at sixth sampling of EXP1) and 1,500 (at fifth sampling of EXP2) fish were sampled for genetic parameter estimation. The individual variation in FW, SW, and SW/FW was very large at each of the seven samplings indicating a large variation among individuals in the optimum time of transfer to seawater. SW/FW showed significant genetic variation in both 0+ and 1+ smolts, which indicates the possibility for selection for improved synchronization of smoltification status of Atlantic salmon at the time where the largest proportion of the fish is considered to be smolt. However, the genetic correlation between SW/FW of 0+ and 1+ was not significantly different from zero indicating very little shared genetic variation in SW/FW in 0+ and 1+ fish. Smoltification phenotypes showed temporal progression over the smoltification period, and this progression varied between 0+ and 1+ smolt highlighting the importance of correctly timing the major sampling point, and when cohorts are transferred to seawater. This also highlighted the need for further research into noninvasive methods of objectively measuring individual smoltification through time and subsequent smolt survival and growth rate at sea.

5.
Front Genet ; 12: 671491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527016

RESUMO

Recording the fillet lipid percentage in European seabass is crucial to control lipid deposition as a means toward improving production efficiency and product quality. The reference method for recording lipid content is solvent lipid extraction and is the most accurate and precise method available. However, it is costly, requires sacrificing the fish and grinding the fillet sample which limits the scope of applications, for example grading of fillets, recording live fish or selective breeding of fish with own phenotypes are all limited. We tested a rapid, cost effective and non-destructive handheld microwave dielectric spectrometer (namely the Distell fat meter) against the reference method by recording both methods on 313 European seabass (Dicentrarchus labrax). The total method agreement between the dielectric spectrometer and the reference method was assessed by Lin's concordance correlation coefficient (CCC), which was low to moderate CCC = 0.36-0.63. We detected a significant underestimation in accuracy of lipid percentage 22-26% by the dielectric spectrometer and increased imprecision resulting in the coefficient of variation (CV) doubling for dielectric spectrometer CV = 40.7-46% as compared to the reference method 27-31%. Substantial genetic variation for fillet lipid percentage was found for both the reference method (h 2 = 0.59) and dielectric spectroscopy (h 2 = 0.38-0.58), demonstrating that selective breeding is a promising method for controlling fillet lipid content. Importantly, the genetic correlation (r g) between the dielectric spectrometer and the reference method was positive and close to unity (r g = 0.96), demonstrating the dielectric spectrometer captures practically all the genetic variation in the reference method. These findings form the basis of defining the scope of applications and experimental design for using dielectric spectroscopy for recording fillet lipid content in European seabass and validate its use for selective breeding.

6.
Front Microbiol ; 12: 636223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927700

RESUMO

Better characterization of changes in the rumen microbiota in dairy cows over the lactation period is crucial for understanding how microbial factors may potentially be interacting with host phenotypes. In the present study, we characterized the rumen bacterial and archaeal community composition of 60 lactating Holstein dairy cows (33 multiparous and 27 primiparous), sampled twice within the same lactation with a 122 days interval. Firmicutes and Bacteroidetes dominated the rumen bacterial community and showed no difference in relative abundance between samplings. Two less abundant bacterial phyla (SR1 and Proteobacteria) and an archaeal order (Methanosarcinales), on the other hand, decreased significantly from the mid-lactation to the late-lactation period. Moreover, between-sampling stability assessment of individual operational taxonomic units (OTUs), evaluated by concordance correlation coefficient (C-value) analysis, revealed the majority of the bacterial OTUs (6,187 out of 6,363) and all the 79 archaeal OTUs to be unstable over the investigated lactation period. The remaining 176 stable bacterial OTUs were mainly assigned to Prevotella, unclassified Prevotellaceae, and unclassified Bacteroidales. Milk phenotype-based screening analysis detected 32 bacterial OTUs, mainly assigned to unclassified Bacteroidetes and Lachnospiraceae, associated with milk fat percentage, and 6 OTUs, assigned to Ruminococcus and unclassified Ruminococcaceae, associated with milk protein percentage. These OTUs were only observed in the multiparous cows. None of the archaeal OTUs was observed to be associated with the investigated phenotypic parameters, including methane production. Co-occurrence analysis of the rumen bacterial and archaeal communities revealed Fibrobacter to be positively correlated with the archaeal genus vadinCA11 (Pearson r = 0.76) and unclassified Methanomassiliicoccaceae (Pearson r = 0.64); vadinCA11, on the other hand, was negatively correlated with Methanobrevibacter (Pearson r = -0.56). In conclusion, the rumen bacterial and archaeal communities of dairy cows displayed distinct stability at different taxonomic levels. Moreover, specific members of the rumen bacterial community were observed to be associated with milk phenotype parameters, however, only in multiparous cows, indicating that dairy cow parity could be one of the driving factors for host-microbe interactions.

7.
Genet Sel Evol ; 53(1): 12, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546581

RESUMO

BACKGROUND: Product quality and production efficiency of Atlantic salmon are, to a large extent, influenced by the deposition and depletion of lipid reserves. Fillet lipid content is a heritable trait and is unfavourably correlated with growth, thus genetic management of fillet lipid content is needed for sustained genetic progress in these two traits. The laboratory-based reference method for recording fillet lipid content is highly accurate and precise but, at the same time, expensive, time-consuming, and destructive. Here, we test the use of rapid and cheaper vibrational spectroscopy methods, namely near-infrared (NIR) and Raman spectroscopy both as individual phenotypes and phenotypic predictors of lipid content in Atlantic salmon. RESULTS: Remarkably, 827 of the 1500 individual Raman variables (i.e. Raman shifts) of the Raman spectrum were significantly heritable (heritability (h2) ranging from 0.15 to 0.65). Similarly, 407 of the 2696 NIR spectral landscape variables (i.e. wavelengths) were significantly heritable (h2 = 0.27-0.40). Both Raman and NIR spectral landscapes had significantly heritable regions, which are also informative in spectroscopic predictions of lipid content. Partial least square predicted lipid content using Raman and NIR spectra were highly concordant and highly genetically correlated with the lipid content values ([Formula: see text] = 0.91-0.98) obtained with the reference method using Lin's concordance correlation coefficient (CCC = 0.63-0.90), and were significantly heritable ([Formula: see text] = 0.52-0.67). CONCLUSIONS: Both NIR and Raman spectral landscapes show substantial additive genetic variation and are highly genetically correlated with the reference method. These findings lay down the foundation for rapid spectroscopic measurement of lipid content in salmonid breeding programmes.


Assuntos
Produtos Pesqueiros/normas , Lipídeos/análise , Característica Quantitativa Herdável , Salmo salar/genética , Análise Espectral Raman/métodos , Animais , Cruzamento/métodos , Cruzamento/normas , Metabolismo dos Lipídeos , Lipídeos/genética , Polimorfismo Genético , Padrões de Referência , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/normas , Análise Espectral Raman/normas
8.
ISME J ; 14(8): 2019-2033, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32366970

RESUMO

Reducing methane emissions from livestock production is of great importance for the sustainable management of the Earth's environment. Rumen microbiota play an important role in producing biogenic methane. However, knowledge of how host genetics influences variation in ruminal microbiota and their joint effects on methane emission is limited. We analyzed data from 750 dairy cows, using a Bayesian model to simultaneously assess the impact of host genetics and microbiota on host methane emission. We estimated that host genetics and microbiota explained 24% and 7%, respectively, of variation in host methane levels. In this Bayesian model, one bacterial genus explained up to 1.6% of the total microbiota variance. Further analysis was performed by a mixed linear model to estimate variance explained by host genomics in abundances of microbial genera and operational taxonomic units (OTU). Highest estimates were observed for a bacterial OTU with 33%, for an archaeal OTU with 26%, and for a microbial genus with 41% heritability. However, after multiple testing correction for the number of genera and OTUs modeled, none of the effects remained significant. We also used a mixed linear model to test effects of individual host genetic markers on microbial genera and OTUs. In this analysis, genetic markers inside host genes ABS4 and DNAJC10 were found associated with microbiota composition. We show that a Bayesian model can be utilized to model complex structure and relationship between microbiota simultaneously and their interaction with host genetics on methane emission. The host genome explains a significant fraction of between-individual variation in microbial abundance. Individual microbial taxonomic groups each only explain a small amount of variation in methane emissions. The identification of genes and genetic markers suggests that it is possible to design strategies for breeding cows with desired microbiota composition associated with phenotypes.


Assuntos
Metano , Microbiota , Animais , Archaea/genética , Teorema de Bayes , Bovinos , Dieta , Feminino , Microbiota/genética , Rúmen
9.
J Dairy Sci ; 103(5): 4557-4569, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32197852

RESUMO

Subclinical metabolic disorders such as ketosis cause substantial economic losses for dairy farmers in addition to the serious welfare issues they pose for dairy cows. Major hurdles in genetic improvement against metabolic disorders such as ketosis include difficulties in large-scale phenotype recording and low heritability of traits. Milk concentrations of ketone bodies, such as acetone and ß-hydroxybutyric acid (BHB), might be useful indicators to select cows for low susceptibility to ketosis. However, heritability estimates reported for milk BHB and acetone in several dairy cattle breeds were low. The rumen microbial community has been reported to play a significant role in host energy homeostasis and metabolic and physiologic adaptations. The current study aims at investigating the effects of cows' genome and rumen microbial composition on concentrations of acetone and BHB in milk, and identifying specific rumen microbial taxa associated with variation in milk acetone and BHB concentrations. We determined the concentrations of acetone and BHB in milk using nuclear magnetic resonance spectroscopy on morning milk samples collected from 277 Danish Holstein cows. Imputed high-density genotype data were available for these cows. Using genomic and microbial prediction models with a 10-fold resampling strategy, we found that rumen microbial composition explains a larger proportion of the variation in milk concentrations of acetone and BHB than do host genetics. Moreover, we identified associations between milk acetone and BHB with some specific bacterial and archaeal operational taxonomic units previously reported to have low to moderate heritability, presenting an opportunity for genetic improvement. However, higher covariation between specific microbial taxa and milk acetone and BHB concentrations might not necessarily indicate a causal relationship; therefore further validation is needed before considering implementation in selection programs.


Assuntos
Doenças dos Bovinos/diagnóstico , Microbioma Gastrointestinal , Cetose/veterinária , Leite/química , Rúmen/microbiologia , Ácido 3-Hidroxibutírico/análise , Acetona/análise , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Feminino , Testes Genéticos/veterinária , Corpos Cetônicos/análise , Cetose/diagnóstico , Lactação , Fenótipo , Rúmen/metabolismo
10.
Animals (Basel) ; 9(10)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640130

RESUMO

Partners in Expert Working Group WG2 of the COST Action METHAGENE have used several methods for measuring methane output by individual dairy cattle under various environmental conditions. Methods included respiration chambers, the sulphur hexafluoride (SF6) tracer technique, breath sampling during milking or feeding, the GreenFeed system, and the laser methane detector. The aim of the current study was to review and compare the suitability of methods for large-scale measurements of methane output by individual animals, which may be combined with other databases for genetic evaluations. Accuracy, precision and correlation between methods were assessed. Accuracy and precision are important, but data from different sources can be weighted or adjusted when combined if they are suitably correlated with the 'true' value. All methods showed high correlations with respiration chambers. Comparisons among alternative methods generally had lower correlations than comparisons with respiration chambers, despite higher numbers of animals and in most cases simultaneous repeated measures per cow per method. Lower correlations could be due to increased variability and imprecision of alternative methods, or maybe different aspects of methane emission are captured using different methods. Results confirm that there is sufficient correlation between methods for measurements from all methods to be combined for international genetic studies and provide a much-needed framework for comparing genetic correlations between methods should these become available.

11.
J Dairy Sci ; 102(7): 6319-6329, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31103308

RESUMO

Organic dairy cows in Denmark are often kept indoors during the winter and outside at least part time in the summer. Consequently, their diet changes by the season. We hypothesized that grazing might affect enteric CH4 emissions due to changes in the nutrition, maintenance, and activity of the cows, and they might differentially respond to these factors. This study assessed the repeatability of enteric CH4 emission measurements for Jersey cattle in a commercial organic dairy herd in Denmark. It also evaluated the effects of a gradual transition from indoor winter feeding to outdoor spring grazing. Further, it assessed the individual-level correlations between measurements during the consecutive feeding periods (phenotype × environment, P × E) as neither pedigrees nor genotypes were available to estimate a genotype by environment effect. Ninety-six mixed-parity lactating Jersey cows were monitored for 30 d before grazing and for 24 d while grazing. The cows spent 8 to 11 h grazing each day and had free access to an in-barn automatic milking system (AMS). For each visit to the AMS, milk yield was recorded and logged along with date and time. Monitoring equipment installed in the AMS feed bins continuously measured enteric CH4 and CO2 concentrations (ppm) using a noninvasive "sniffer" method. Raw enteric CH4 and CO2 concentrations and their ratio (CH4:CO2) were derived from average concentrations measured during milking and per day for each cow. We used mixed models equations to estimate variance components and adjust for the fixed and random effects influencing the analyzed gas concentrations. Univariate models were used to precorrect the gas measurements for diurnal variation and to estimate the direct effect of grazing on the analyzed concentrations. A bivariate model was used to assess the correlation between the 2 periods (in-barn vs. grazing) for each gas concentration. Grazing had a weak P × E interaction for daily average CH4 and CO2 gas concentrations. Bivariate repeatability estimates for average CH4 and CO2 concentrations and CH4:CO2 were 0.77 to 0.78, 0.73 to 0.80, and 0.26, respectively. Repeatability for CH4:CO2 was low (0.26) but indicated some between-animal variation. In conclusion, grazing does not create significant shifts compared with indoor feeding in how animals rank for average CH4 and CO2 concentrations and CH4:CO2. We found no evidence that separate evaluation is needed to quantify enteric CH4 and CO2 emissions from Jersey cows during in-barn and grazing periods.


Assuntos
Bovinos/fisiologia , Metano/análise , Estômago de Ruminante/metabolismo , Animais , Dinamarca , Comportamento Alimentar , Feminino , Lactação , Masculino , Metano/metabolismo , Leite/química , Leite/metabolismo , Estado Nutricional , Fenótipo , Estações do Ano , Estômago de Ruminante/química
12.
Genet Sel Evol ; 51(1): 23, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142263

RESUMO

BACKGROUND: Fatty acids (FA) in bovine milk derive through body mobilization, de novo synthesis or from the feed via the blood stream. To be able to digest feedstuff, the cow depends on its rumen microbiome. The relative abundance of the microbes has been shown to differ between cows. To date, there is little information on the impact of the microbiome on the formation of specific milk FA. Therefore, in this study, our aim was to investigate the impact of the rumen bacterial microbiome on milk FA composition. Furthermore, we evaluated the predictive value of the rumen microbiome and the host genetics on the composition of individual FA in milk. RESULTS: Our results show that the proportion of variance explained by the rumen bacteria composition (termed microbiability or [Formula: see text]) was generally smaller than that of the genetic component (heritability), and that rumen bacteria influenced most C15:0, C17:0, C18:2 n-6, C18:3 n-3 and CLA cis-9, trans-11 with estimated [Formula: see text] ranging from 0.26 to 0.42. For C6:0, C8:0, C10:0, C12:0, C16:0, C16:1 cis-9 and C18:1 cis-9, the variance explained by the rumen bacteria component was close to 0. In general, both the rumen microbiome and the host genetics had little value for predicting FA phenotype. Compared to genetic information only, adding rumen bacteria information resulted in a significant improvement of the predictive value for C15:0 from 0.22 to 0.38 (P = 9.50e-07) and C18:3 n-3 from 0 to 0.29 (P = 8.81e-18). CONCLUSIONS: The rumen microbiome has a pronounced influence on the content of odd chain FA and polyunsaturated C18 FA, and to a lesser extent, on the content of the short- and medium-chain FA in the milk of Holstein cattle. The accuracy of prediction of FA phenotypes in milk based on information from either the animal's genotypes or rumen bacteria composition was very low.


Assuntos
Bovinos/microbiologia , Ácidos Graxos/metabolismo , Microbiota , Leite/metabolismo , Rúmen/microbiologia , Animais , Bovinos/metabolismo
13.
PLoS Genet ; 14(10): e1007580, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30312316

RESUMO

Cattle and other ruminants produce large quantities of methane (~110 million metric tonnes per annum), which is a potent greenhouse gas affecting global climate change. Methane (CH4) is a natural by-product of gastro-enteric microbial fermentation of feedstuffs in the rumen and contributes to 6% of total CH4 emissions from anthropogenic-related sources. The extent to which the host genome and rumen microbiome influence CH4 emission is not yet well known. This study confirms individual variation in CH4 production was influenced by individual host (cow) genotype, as well as the host's rumen microbiome composition. Abundance of a small proportion of bacteria and archaea taxa were influenced to a limited extent by the host's genotype and certain taxa were associated with CH4 emissions. However, the cumulative effect of all bacteria and archaea on CH4 production was 13%, the host genetics (heritability) was 21% and the two are largely independent. This study demonstrates variation in CH4 emission is likely not modulated through cow genetic effects on the rumen microbiome. Therefore, the rumen microbiome and cow genome could be targeted independently, by breeding low methane-emitting cows and in parallel, by investigating possible strategies that target changes in the rumen microbiome to reduce CH4 emissions in the cattle industry.


Assuntos
Bovinos/microbiologia , Metano/metabolismo , Microbiota/fisiologia , Leite/química , Rúmen/microbiologia , Animais , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bovinos/classificação , Bovinos/genética , Feminino , Genoma/genética , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Microbiota/genética , Rúmen/metabolismo
14.
J Dairy Sci ; 101(11): 9847-9862, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30172409

RESUMO

In the present study, we hypothesized that the rumen bacterial and archaeal communities would change significantly over the transition period of dairy cows, mainly as an adaptation to the classical use of low-grain prepartum and high-grain postpartum diets. Bacterial 16S rRNA gene amplicon sequencing of rumen samples from 10 primiparous Holstein dairy cows revealed no changes over the transition period in relative abundance of genera such as Ruminococcus, Butyrivibrio, Clostridium, Coprococcus, and Pseudobutyrivibrio. However, other dominant genus-level taxa, such as Prevotella, unclassified Ruminococcaceae, and unclassified Succinivibrionaceae, showed distinct changes in relative abundance from the prepartum to the postpartum period. Overall, we observed individual fluctuation patterns over the transition period for a range of bacterial taxa that, in some cases, were correlated with observed changes in the rumen short-chain fatty acids profile. Combined results from clone library and terminal-restriction fragment length polymorphism (T-RFLP) analyses, targeting the methyl-coenzyme M reductase α-subunit (mcrA) gene, revealed a methanogenic archaeal community dominated by the Methanobacteriales and Methanomassiliicoccales orders, particularly the genera Methanobrevibacter, Methanosphaera, and Methanomassiliicoccus. As observed for the bacterial community, the T-RFLP patterns showed significant shifts in methanogenic community composition over the transition period. Together, the composition of the rumen bacterial and archaeal communities exhibited changes in response to particularly the dietary changes of dairy cows over the transition period.


Assuntos
Ração Animal , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Bovinos/microbiologia , Microbioma Gastrointestinal , Rúmen/microbiologia , Animais , Archaea/classificação , Bactérias/classificação , Ácidos Graxos Voláteis/metabolismo , Feminino , Tipagem Molecular , Polimorfismo de Fragmento de Restrição , Período Pós-Parto , Gravidez , RNA Ribossômico 16S , Rúmen/metabolismo
15.
PLoS One ; 12(11): e0187858, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117259

RESUMO

Dairy cows experience dramatic changes in host physiology from gestation to lactation period and dietary switch from high-forage prepartum diet to high-concentrate postpartum diet over the transition period (parturition +/- three weeks). Understanding the community structure and activity of the rumen microbiota and its associative patterns over the transition period may provide insight for e.g. improving animal health and production. In the present study, rumen samples from ten primiparous Holstein dairy cows were collected over seven weeks spanning the transition period. Total RNA was extracted from the rumen samples and cDNA thereof was subsequently used for characterizing the metabolically active bacterial (16S rRNA transcript amplicon sequencing) and archaeal (qPCR, T-RFLP and mcrA and 16S rRNA transcript amplicon sequencing) communities. The metabolically active bacterial community was dominated by three phyla, showing significant changes in relative abundance range over the transition period: Firmicutes (from prepartum 57% to postpartum 35%), Bacteroidetes (from prepartum 22% to postpartum 18%) and Proteobacteria (from prepartum 7% to postpartum 32%). For the archaea, qPCR analysis of 16S rRNA transcript number, revealed a significant prepartum to postpartum increase in Methanobacteriales, in accordance with an observed increase (from prepartum 80% to postpartum 89%) in relative abundance of 16S rRNA transcript amplicons allocated to this order. On the other hand, a significant prepartum to postpartum decrease (from 15% to 2%) was observed in relative abundance of Methanomassiliicoccales 16S rRNA transcripts. In contrast to qPCR analysis of the 16S rRNA transcripts, quantification of mcrA transcripts revealed no change in total abundance of metabolically active methanogens over the transition period. According to T-RFLP analysis of the mcrA transcripts, two Methanobacteriales genera, Methanobrevibacter and Methanosphaera (represented by the T-RFs 39 and 267 bp), represented more than 70% of the metabolically active methanogens, showing no significant changes over the transition period; minor T-RFs, likely to represent members of the order Methanomassiliicoccales and with a relative abundance below 5% in total, decreased significantly over the transition period. In accordance with the T-RFLP analysis, the mcrA transcript amplicon sequencing revealed Methanobacteriales to cover 99% of the total reads, dominated by the genera Methanobrevibacter (75%) and Methanosphaera (24%), whereas the Methanomassiliicoccales order covered only 0.2% of the total reads. In conclusion, the present study showed that the structure of the metabolically active bacterial and archaeal rumen communities changed over the transition period, likely in response to the dramatic changes in physiology and nutritional factors like dry matter intake and feed composition. It should be noted however that for the methanogens, the observed community changes were influenced by the analyzed gene (mcrA or 16S rRNA).


Assuntos
Bacteroidetes/metabolismo , Firmicutes/metabolismo , Microbioma Gastrointestinal/genética , Methanobacteriales/metabolismo , Proteobactérias/metabolismo , Rúmen/microbiologia , Ração Animal/análise , Bem-Estar do Animal , Animais , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bovinos , Dieta , Feminino , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Lactação/fisiologia , Methanobacteriales/classificação , Methanobacteriales/genética , Methanobacteriales/isolamento & purificação , Oxirredutases/genética , Parto/fisiologia , Filogenia , Polimorfismo de Fragmento de Restrição , Período Pós-Parto/fisiologia , Gravidez , Análise de Componente Principal , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...