Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 98(12): 1280-90, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19000002

RESUMO

A hybrid mechanistic/statistical model was developed to predict vector activity and epidemics of vector-borne viruses spreading from external virus sources to an adjacent crop. The pathosystem tested was Bean yellow mosaic virus (BYMV) spreading from annually self-regenerating, legume-based pastures to adjacent crops of narrow-leafed lupin (Lupinus angustifolius) in the winter-spring growing season in a region with a Mediterranean-type environment where the virus persists over summer within dormant seed of annual clovers. The model uses a combination of daily rainfall and mean temperature during late summer and early fall to drive aphid population increase, migration of aphids from pasture to lupin crops, and the spread of BYMV. The model predicted time of arrival of aphid vectors and resulting BYMV spread successfully for seven of eight datasets from 2 years of field observations at four sites representing different rainfall and geographic zones of the southwestern Australian grainbelt. Sensitivity analysis was performed to determine the relative importance of the main parameters that describe the pathosystem. The hybrid mechanistic/statistical approach used created a flexible analytical tool for vector-mediated plant pathosystems that made useful predictions even when field data were not available for some components of the system.


Assuntos
Afídeos/virologia , Lupinus/virologia , Potyvirus/crescimento & desenvolvimento , Animais , Austrália , Produtos Agrícolas/virologia , Geografia , Insetos Vetores/virologia , Região do Mediterrâneo , Modelos Teóricos , Doenças das Plantas/virologia
2.
Phytopathology ; 97(8): 1011-21, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18943642

RESUMO

ABSTRACT The timing of maturation of pseudothecia and discharge of ascospores of the blackleg fungus (Leptosphaeria maculans) is critical in relation to infection early in the cropping season of canola. During 1998 to 2000, development of pseudothecia was investigated on residues of the previous year's canola crop collected from four agroclimatically different locations: Mount Barker (southern high rainfall), Wongan Hills (central medium rainfall), Merredin (central low rainfall), and East Chapman (northern low rainfall) in Western Australia. The pseudothecia matured on residues at different times after harvest in various regions. In general, pseudothecia maturity occurred earlier in the high-rainfall areas than in medium- and low-rainfall areas. An ascospore discharge pattern was investigated from residues of crop from the previous year (6-month-old residues) at three locations-Mount Barker, Wongan Hills, and East Chapman in Western Australia-and from 18-month-old residues that were burnt and raked in the previous year at Mount Barker and East Chapman. Ascospore discharge commenced earlier in high-rainfall (>450 mm) areas (Mount Barker) and late in northern low-rainfall (<325 mm) areas (East Chapman). The major ascospore showers took place during May (late autumn) and June (early winter) at Mount Barker and during July and August (mid- to late winter) at East Chapman. The number of ascospores discharged was extremely low at East Chapman compared with Mount Barker. At both locations, the number of ascospores discharged from 18-month-old residues that were raked and burnt in the previous year were only approximately 10% of those discharged from previous year's residues left undisturbed. The discharge of ascospores on any given day was negatively correlated with accumulated temperatures, maximum temperature, evaporation, minimum and maximum soil temperatures, and solar radiation and was positively correlated with the minimum temperature, rain, and minimum relative humidity. This is the first report describing how pseudothecia mature on residues in different rainfall areas in Western Australia, and it potentially can be used in developing a forecasting system to avoid the synchronization of major ascospore showers with the maximum susceptibility period of canola seedlings.

3.
Plant Cell Environ ; 26(6): 835-844, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12803611

RESUMO

Little is known about root architectural attributes that aid the capture of nitrate from coarse-textured soil profiles of high leaching potential. In this study, a range of root architectures from the herringbone to the dichotomous structure were simulated, and their capacity to take up nitrate leaching through a sandy profile was recorded. All root systems had equal total volume at each point in time, and so were considered cost equivalent. These simulations showed that the root architecture likely to maximize nitrate capture from sandy soils (under the Mediterranean rainfall pattern experienced in Western Australia) is one that quickly produces a high density of roots in the top-soil early in the season, thereby reducing total nitrate leached with opening season rains, but also has vigorous taproot growth, enabling access to deep-stored water and leached nitrate later in the season. This is the first published, spatially explicit attempt to assess the ability of different root architectures equivalent in cost, to capture nitrate from a spatially and temporally heterogeneous soil environment.

4.
Phytopathology ; 93(9): 1073-81, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18944090

RESUMO

ABSTRACT A simple model has been developed to predict the onset of pseudothecia maturity and seasonal ascospore showers in relation to blackleg disease in canola, caused by the fungus Leptosphaeria maculans. The model considers a combination of two weather factors, daily mean temperature and daily total rainfall, to drive progress of maturity of pseudothecia on the infested canola stubble left from past crops. Each day is categorized as suitable or not suitable for progress of the maturation process. The onset of pseudothecia maturity occurs when approximately 43 suitable days have occurred. Following the onset of maturity, ascospore showers are triggered when daily rainfall exceeds a threshold. The model satisfactorily predicted the timing of the onset of pseudothecia maturity when tested with 3 years of field observations at four locations in Western Australia, which characteristically has a Mediterranean climate. The model also agreed reasonably well with the daily pattern of ascospore release observed in two locations. Sensitivity analysis was performed to show the relative importance of the parameters that describe the onset of pseudothecia maturity.

5.
Phytopathology ; 92(10): 1110-21, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18944222

RESUMO

ABSTRACT A spatiotemporal model has been developed to simulate the spread of anthracnose, initiated by infected seed, in a lupin field. The model quantifies the loss of healthy growing points of lupin in all 1-m(2) subunits of a field throughout a growing season. The development of growing points is modeled as a function of temperature using a 1-day time step, and disease-induced compensatory growth is accounted for. Dispersal of spores is simulated explicitly using Monte Carlo techniques. Spread of spores occurs during rainfall events on a 1-h time step. The distance traveled by spores is partially dependent on wind speed and is generated by adding the values selected from half-Cauchy distributions. The direction of travel of the spores is influenced by wind direction. The model has been employed to produce a theoretical assessment of damage from disease in two environments at five levels of seed infection. It was calculated that in a susceptible lupin cultivar with a 0.01% initial seed infection, anthracnose would cause approximately 15% loss of healthy growing points in a high rainfall environment in Western Australia. In a low rainfall environment, similar damage would be unlikely even with a much higher (1%) level of seed infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...