Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(21): 9329-9338, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37082906

RESUMO

The chemical pathway for synthesizing covalent organic frameworks (COFs) involves a complex medley of reaction sequences over a rippling energy landscape that cannot be adequately described using existing theories. Even with the development of state-of-the-art experimental and computational tools, identifying primary mechanisms of nucleation and growth of COFs remains elusive. Other than empirically, little is known about how the catalyst composition and water activity affect the kinetics of the reaction pathway. Here, for the first time, we employ time-resolved in situ Fourier transform infrared spectroscopy (FT-IR) coupled with a six-parameter microkinetic model consisting of ∼10 million reactions and over 20 000 species. The integrated approach elucidates previously unrecognized roles of catalyst pKa on COF yield and water on growth rate and size distribution. COF crystalline yield increases with decreasing pKa of the catalysts, whereas the effect of water is to reduce the growth rate of COF and broaden the size distribution. The microkinetic model reproduces the experimental data and quantitatively predicts the role of synthesis conditions such as temperature, catalyst, and precursor concentration on the nucleation and growth rates. Furthermore, the model also validates the second-order reaction mechanism of COF-5 and predicts the activation barriers for classical and non-classical growth of COF-5 crystals. The microkinetic model developed here is generalizable to different COFs and other multicomponent systems.

2.
JACS Au ; 2(2): 453-462, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35252994

RESUMO

Synthesis of porous, covalent crystals such as zeolites and metal-organic frameworks (MOFs) cannot be described adequately using existing crystallization theories. Even with the development of state-of-the-art experimental and computational tools, the identification of primary mechanisms of nucleation and growth of MOFs remains elusive. Here, using time-resolved in-situ X-ray scattering coupled with a six-parameter microkinetic model consisting of ∼1 billion reactions and up to ∼100 000 metal nodes, we identify autocatalysis and oriented attachment as previously unrecognized mechanisms of nucleation and growth of the MOF UiO-66. The secondary building unit (SBU) formation follows an autocatalytic initiation reaction driven by a self-templating mechanism. The induction time of MOF nucleation is determined by the relative rate of SBU attachment (chain extension) and the initiation reaction, whereas the MOF growth is primarily driven by the oriented attachment of reactive MOF crystals. The average size and polydispersity of MOFs are controlled by surface stabilization. Finally, the microkinetic model developed here is generalizable to different MOFs and other multicomponent systems.

3.
Nanoscale ; 14(5): 1723-1732, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35018395

RESUMO

The two-step nucleation (TSN) theory and crystal structure prediction (CSP) techniques are two disjointed yet popular methods to predict nucleation rate and crystal structure, respectively. The TSN theory is a well-established mechanism to describe the nucleation of a wide range of crystalline materials in different solvents. However, it has never been expanded to predict the crystal structure or polymorphism. On the contrary, the existing CSP techniques only empirically account for the solvent effects. As a result, the TSN theory and CSP techniques continue to evolve as separate methods to predict two essential attributes of nucleation - rate and structure. Here we bridge this gap and show for the first time how a crystal structure is formed within the framework of TSN theory. A sequential desolvation mechanism is proposed in TSN, where the first step involves partial desolvation to form dense clusters followed by selective desolvation of functional groups directing the formation of crystal structure. We investigate the effect of the specific interaction on the degree of solvation around different functional groups of glutamic acid molecules using molecular simulations. The simulated energy landscape and activation barriers at increasing supersaturations suggest sequential and selective desolvation. We validate computationally and experimentally that the crystal structure formation and polymorph selection are due to a previously unrecognized consequence of supersaturation-driven asymmetric desolvation of molecules.

4.
Proc Natl Acad Sci U S A ; 117(48): 30208-30214, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203682

RESUMO

Magnetophoresis is an important physical process with application to drug delivery, biomedical imaging, separation, and mixing. Other than empirically, little is known about how the magnetic field and magnetic properties of a solution affect the flux of magnetic particles. A comprehensive explanation of these effects on the transport of magnetic particles has not been developed yet. Here we formulate a consistent, constitutive equation for the magnetophoretic flux of magnetic nanoparticles suspended in a medium exposed to a stationary magnetic field. The constitutive relationship accounts for contributions from magnetic diffusion, magnetic convection, residual magnetization, and electromagnetic drift. We discovered that the key physical properties governing the magnetophoresis are magnetic diffusion coefficient, magnetic velocity, and activity coefficient, which depend on relative magnetic energy and the molar magnetic susceptibility of particles. The constitutive equation also reveals previously unknown ballistic and diffusive limits for magnetophoresis wherein the paramagnetic particles either aggregate near the magnet or diffusive away from the magnet, respectively. In the diffusive limit, the particle concentration is linearly proportional to the relative magnetic energy of the suspension of paramagnetic particles. The region of the localization of paramagnetic particles near the magnet decreases with increasing the strength of the magnet. The dynamic accumulation of nanoparticles, measured as the thickness of the nanoparticle aggregate, near the magnet compares well with the theoretical prediction. The effect of convective mixing on the rate of magnetophoresis is also discussed for the magnetic targeting applications.


Assuntos
Fenômenos Magnéticos , Difusão , Nanopartículas/química
5.
Proc Natl Acad Sci U S A ; 116(48): 23954-23959, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712439

RESUMO

Solution crystallization is a common technique to grow advanced, functional crystalline materials. Supersaturation, temperature, and solvent composition are known to influence the growth rates and thereby properties of crystalline materials; however, a satisfactory explanation of how these factors affect the activation barrier for growth rates has not been developed. We report here that these effects can be attributed to a previously unrecognized consequence of solvent fluctuations in the solvation shell of solute molecules attaching to the crystal surface. With increasing supersaturation, the average hydration number of the glutamic acid molecule decreases and can reach an asymptotic limit corresponding to the number of adsorption sites on the molecule. The hydration number of the glutamic acid molecule also fluctuates due to the rapid exchange of solvent in the solvation shell and local variation in the supersaturation. These rapid fluctuations allow quasi-equilibrium between fully solvated and partially desolvated states of molecules, which can be used to construct a double-well potential and thereby to identify the transition state and the required activation barrier. The partially desolvated molecules are not stable and can attach spontaneously to the crystal surface. The activation barrier versus hydration number follows the Evans-Polanyi relation. The predicted absolute growth rates of the α-glutamic acid crystal at lower supersaturations are in reasonable agreement with the experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...