Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293267

RESUMO

Two analogues of the MS3 aptamer, which was previously shown to have an exquisite capability to selectively bind and modulate the activity of mutant huntingtin (mHTT), have been here designed and evaluated in their physicochemical and biological properties. Featured by a distinctive propensity to form complex G-quadruplex structures, including large multimeric aggregates, the original 36-mer MS3 has been truncated to give a 33-mer (here named MS3-33) and a 17-mer (here named MS3-17). A combined use of different techniques (UV, CD, DSC, gel electrophoresis) allowed a detailed physicochemical characterization of these novel G-quadruplex-forming aptamers, tested in vitro on SH-SY5Y cells and in vivo on a Drosophila Huntington's disease model, in which these shorter MS3-derived oligonucleotides proved to have improved bioactivity in comparison with the parent aptamer.


Assuntos
Aptâmeros de Nucleotídeos , Quadruplex G , Doença de Huntington , Neuroblastoma , Humanos , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/química , Proteína Huntingtina/genética
3.
Front Genet ; 13: 734208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910225

RESUMO

A transition from one developmental stage to another is accompanied by activation of developmental programs and corresponding gene ensembles. Changes in the spatial conformation of the corresponding loci are associated with this activation and can be investigated with the help of the Chromosome Conformation Capture (3C) methodology. Application of 3C to specific developmental stages is a sophisticated task. Here, we describe the use of the 3C method to study the spatial organization of developmental loci in Drosophila larvae. We critically analyzed the existing protocols and offered our own solutions and the optimized protocol to overcome limitations. To demonstrate the efficiency of our procedure, we studied the spatial organization of the developmental locus Dad in 3rd instar Drosophila larvae. Differences in locus conformation were found between embryonic cells and living wild-type larvae. We also observed the establishment of novel regulatory interactions in the presence of an adjacent transgene upon activation of its expression in larvae. Our work fills the gap in the application of the 3C method to Drosophila larvae and provides a useful guide for establishing 3C on an animal model.

4.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563194

RESUMO

A set of guanine-rich aptamers able to preferentially recognize full-length huntingtin with an expanded polyglutamine tract has been recently identified, showing high efficacy in modulating the functions of the mutated protein in a variety of cell experiments. We here report a detailed biophysical characterization of the best aptamer in the series, named MS3, proved to adopt a stable, parallel G-quadruplex structure and show high nuclease resistance in serum. Confocal microscopy experiments on HeLa and SH-SY5Y cells, as models of non-neuronal and neuronal cells, respectively, showed a rapid, dose-dependent uptake of fluorescein-labelled MS3, demonstrating its effective internalization, even in the absence of transfecting agents, with no general cytotoxicity. Then, using a well-established Drosophila melanogaster model for Huntington's disease, which expresses the mutated form of human huntingtin, a significant improvement in the motor neuronal function in flies fed with MS3 was observed, proving the in vivo efficacy of this aptamer.


Assuntos
Doença de Huntington , Animais , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo
5.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630602

RESUMO

Huntington's disease (HD) is a dramatic neurodegenerative disorder caused by the abnormal expansion of a CAG triplet in the huntingtin gene, producing an abnormal protein. As it leads to the death of neurons in the cerebral cortex, the patients primarily present with neurological symptoms, but recently metabolic changes resulting from mitochondrial dysfunction have been identified as novel pathological features. The carnitine shuttle is a complex consisting of three enzymes whose function is to transport the long-chain fatty acids into the mitochondria. Here, its pharmacological modification was used to test the hypothesis that shifting metabolism to lipid oxidation exacerbates the HD symptoms. Behavioural and transcriptional analyses were carried out on HD Drosophila model, to evaluate the involvement of the carnitine cycle in this pathogenesis. Pharmacological inhibition of CPT1, the rate-limiting enzyme of the carnitine cycle, ameliorates the HD symptoms in Drosophila, likely acting on the expression of carnitine-related genes.


Assuntos
Carnitina O-Palmitoiltransferase , Carnitina , Doença de Huntington , Animais , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Modelos Animais de Doenças , Drosophila , Doença de Huntington/tratamento farmacológico , Doença de Huntington/enzimologia , Fenótipo
6.
Antioxidants (Basel) ; 11(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35326114

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the most common airway diseases, and it is considered a major global health problem. Macrophages are the most representative immune cells in the respiratory tract, given their role in surveying airways, removing cellular debris, immune surveillance, and resolving inflammation. Macrophages exert their functions by adopting phenotypical changes based on the stimuli they receive from the surrounding tissue. This plasticity is described as M1/M2 macrophage polarization, which consists of a strictly coordinated process leading to a difference in the expression of surface markers, the production of specific factors, and the execution of biological activities. This review focuses on the role played by macrophages in COPD and their implication in inflammatory and oxidative stress processes. Particular attention is on macrophage polarization, given macrophage plasticity is a key feature in COPD. We also discuss the regulatory influence of extracellular vesicles (EVs) in cell-to-cell communications. EV composition and cargo may influence many COPD-related aspects, including inflammation, tissue remodeling, and macrophage dysfunctions. These findings could be useful for better addressing the role of macrophages in the complex pathogenesis and outcomes of COPD.

7.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799739

RESUMO

The chromatin remodeler SWI/SNF is an important participant in gene activation, functioning predominantly by opening the chromatin structure on promoters and enhancers. Here, we describe its novel mode of action in which SWI/SNF factors mediate the targeted action of an enhancer. We studied the functions of two signature subunits of PBAP subfamily, BAP170 and SAYP, in Drosophila. These subunits were stably tethered to a transgene reporter carrying the hsp70 core promoter. The tethered subunits mediate transcription of the reporter in a pattern that is generated by enhancers close to the insertion site in multiple loci throughout the genome. Both tethered SAYP and BAP170 recruit the whole PBAP complex to the reporter promoter. However, we found that BAP170-dependent transcription is more resistant to the depletion of other PBAP subunits, suggesting that BAP170 may play a more critical role in establishing enhancer-dependent transcription.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Técnica Indireta de Fluorescência para Anticorpo/métodos , Humanos , Hibridização In Situ/métodos , Modelos Genéticos , Regiões Promotoras Genéticas/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
8.
Antioxidants (Basel) ; 9(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371457

RESUMO

L-Carnitine is an amino acid derivative that plays a key role in the metabolism of fatty acids, including the shuttling of long-chain fatty acyl CoA to fuel mitochondrial ß-oxidation. In addition, L-carnitine reduces oxidative damage and plays an essential role in the maintenance of cellular energy homeostasis. L-carnitine also plays an essential role in the control of cerebral functions, and the aberrant regulation of genes involved in carnitine biosynthesis and mitochondrial carnitine transport in Drosophila models has been linked to neurodegeneration. Drosophila models of neurodegenerative diseases provide a powerful platform to both unravel the molecular pathways that contribute to neurodegeneration and identify potential therapeutic targets. Drosophila can biosynthesize L-carnitine, and its carnitine transport system is similar to the human transport system; moreover, evidence from a defective Drosophila mutant for one of the carnitine shuttle genes supports the hypothesis of the occurrence of ß-oxidation in glial cells. Hence, Drosophila models could advance the understanding of the links between L-carnitine and the development of neurodegenerative disorders. This review summarizes the current knowledge on L-carnitine in Drosophila and discusses the role of the L-carnitine pathway in fly models of neurodegeneration.

9.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050117

RESUMO

A mismatch between ß-oxidation and the tricarboxylic acid cycle (TCA) cycle flux in mitochondria produces an accumulation of lipid metabolic intermediates, resulting in both blunted metabolic flexibility and decreased glucose utilization in the affected cells. The ability of the cell to switch to glucose as an energy substrate can be restored by reducing the reliance of the cell on fatty acid oxidation. The inhibition of the carnitine system, limiting the carnitine shuttle to the oxidation of lipids in the mitochondria, allows cells to develop a high plasticity to metabolic rewiring with a decrease in fatty acid oxidation and a parallel increase in glucose oxidation. We found that 3-(2,2,2-trimethylhydrazine)propionate (THP), which is able to reduce cellular carnitine levels by blocking both carnitine biosynthesis and the cell membrane carnitine/organic cation transporter (OCTN2), was reported to improve mitochondrial dysfunction in several diseases, such as Huntington's disease (HD). Here, new THP-derived carnitine-lowering agents (TCL), characterized by a high affinity for the OCTN2 with a minimal effect on carnitine synthesis, were developed, and their biological activities were evaluated in both in vitro and in vivo HD models. Certain compounds showed promising biological activities: reducing protein aggregates in HD cells, ameliorating motility defects, and increasing the lifespan of HD Drosophila melanogaster.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Longevidade/efeitos dos fármacos , Metilidrazinas/farmacologia , Membro 5 da Família 22 de Carreadores de Soluto/antagonistas & inibidores , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Animais , Carnitina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Drosophila melanogaster/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Agregação Patológica de Proteínas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Membro 5 da Família 22 de Carreadores de Soluto/genética , Transfecção , Resultado do Tratamento
10.
J Vis Exp ; (149)2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31329169

RESUMO

In recent years there has been growing evidence that all organisms and the environment are exposed to hormone-like chemicals, known as endocrine disruptor chemicals (EDCs). These chemicals may alter the normal balance of endocrine systems and lead to adverse effects, as well as an increasing number of hormonal disorders in the human population or disturbed growth and reduced reproduction in the wildlife species. For some EDCs, there are documented health effects and restrictions on their use. However, for most of them, there is still no scientific evidence in this sense. In order to verify potential endocrine effects of a chemical in the full organism, we need to test it in appropriate model systems, as well as in the fruit fly, Drosophila melanogaster. Here we report detailed in vivo protocols to study endocrine disruption in Drosophila, addressing EDC effects on the fecundity/fertility, developmental timing, and lifespan of the fly. In the last few years, we used these Drosophila life traits to investigate the effects of exposure to 17-α-ethinylestradiol (EE2), bisphenol A (BPA), and bisphenol AF (BPA F). Altogether, these assays covered all Drosophila life stages and made it possible to evaluate endocrine disruption in all hormone-mediated processes. Fecundity/fertility and developmental timing assays were useful to measure the EDC impact on the fly reproductive performance and on developmental stages, respectively. Finally, the lifespan assay involved chronic EDC exposures to adults and measured their survivorship. However, these life traits can also be influenced by several experimental factors that had to be carefully controlled. So, in this work, we suggest a series of procedures we have optimized for the right outcome of these assays. These methods allow scientists to establish endocrine disruption for any EDC or for a mixture of different EDCs in Drosophila, although to identify the endocrine mechanism responsible for the effect, further essays could be needed.


Assuntos
Drosophila/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Fertilidade/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA