Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375076

RESUMO

High drinking water temperatures occur due to climate change and could enhance the growth of opportunistic pathogens in drinking water systems. We investigated the influence of drinking water temperatures on the growth of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Mycobacterium kansasii and Aspergillus fumigatus in drinking water biofilms with an autochthonous microflora. Our results reveal that the growth of P. aeruginosa and S. maltophilia in the biofilm already occurred at 15.0 °C, whereas M. kansasii and A. fumigatus were able to grow when temperatures were above 20.0 °C and 25.0 °C, respectively. Moreover, the maximum growth yield of P. aeruginosa, M. kansasii and A. fumigatus increased with increasing temperatures up to 30 °C, whereas an effect of temperature on the yield of S. maltophilia could not be established. In contrast, the maximum ATP concentration of the biofilm decreased with increasing temperatures. We conclude from these results that high drinking water temperatures caused by, e.g., climate change can result in high numbers of P. aeruginosa, M. kansasii and A. fumigatus in drinking water systems, which poses a possible risk to public health. Consequently, it is recommended for countries with a more moderate climate to use or maintain a drinking water maximum standard temperature of 25 °C.

2.
Environ Res ; 194: 110648, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358877

RESUMO

Drinking water distribution systems (DWDSs) have been thoroughly studied, but the concept of thermal energy recovery from DWDSs is very new and has been conceptualized in the past few years. Cold recovery results in a temperature increase of the drinking water. Its effects on drinking water quality and biofilm development are unclear. Hence, we studied both bulk water and biofilm phases for 232 days in two parallel pilot scale distribution systems with two temperature settings after cold recovery, 25 °C and 30 °C, and compared these with a reference pilot system without cold recovery. In all three pilot distributions systems (DSs) our results showed an initial increase in biomass (ATP) in the biofilm phase, along with occurrence of primary colonizers (Betaproteobacteriales) and subsequently a decrease in biomass and an increasing relative abundance of other microbial groups (amoeba resisting groups; Xanthobacteraceae, Legionellales), including those responsible for EPS formation in biofilms (Sphingomonadaceae). The timeline for biofilm microbial development was different for the three pilot DSs: the higher the temperature, the faster the development took place. With respect to the water phase within the three pilot DSs, major microbial contributions came from the feed water (17-100%) and unkown sources (2-80%). Random contributions of biofilm (0-70%) were seen between day 7-77. During this time period six-fold higher ATP concentration (7-11 ng/l) and two-fold higher numbers of high nucleic acid cells (5.20-5.80 × 104 cells/ml) were also observed in the effluent water from all three pilot DSs, compared to the feed water. At the end of the experimental period the microbial composition of effluent water from three pilot DSs revealed no differences, except the presence of a biofilm related microbial group (Sphingomonadaceae), within all three DSs compared to the feed water. In the biofilm phase higher temperatures initiated the growth of primary colonizing bacteria but this did not lead to differences in microbial diversity and composition at the end of the experimental period. Hence, we propose that the microbiological water quality of DWDSs with cold recovery should be monitored more frequently during the first 2-3 months of operation.


Assuntos
Água Potável , Biofilmes , Temperatura , Microbiologia da Água , Qualidade da Água , Abastecimento de Água
3.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30291115

RESUMO

Slow sand filtration with extensive pretreatment reduces the microbial growth potential of drinking water to a minimum level at four surface water supplies in The Netherlands. The potential of these slow sand filtrates (SSFs) to promote microbial growth in warm tap water installations was assessed by measuring biofilm formation and growth of Legionella bacteria on glass and chlorinated polyvinylchloride (CPVC) surfaces exposed to SSFs at 37 ± 2°C in a model system for up to six months. The steady-state biofilm concentration ranged from 230 to 3,980 pg ATP cm-2 on glass and 1.4 (±0.3)-times-higher levels on CPVC. These concentrations correlated significantly with the assimilable organic carbon (AOC) concentrations of the warm water (8 to 24 µg acetate-C equivalents [ac-C eq] liter-1), which were raised about 2 times by mixing cold and heated (70°C) SSFs. All biofilms supported growth of Legionella pneumophila with maximum concentrations ranging from 6 × 102 to 1.5 × 105 CFU cm-2 Biofilms after ≤50 days of exposure were predominated by Betaproteobacteriales, mainly Piscinibacter, Caldimonas, Methyloversatilis, and an uncultured Rhodocyclaceae bacterium. These rapidly growing primary colonizers most likely served as prey for the host amoebae of L. pneumophilaAlphaproteobacteria, mostly Xanthobacteraceae, e.g., Bradyrhizobium, Pseudorhodoplanes, and other amoeba-resistant bacteria, accounted for 37.5% of the clones retrieved. A conceptual model based on a quadratic relationship between the L. pneumophila colony count and the biofilm concentration under steady-state conditions is used to explain the variations in the Legionella CFU pg-1 ATP ratios in the biofilms.IMPORTANCE Proliferation of L. pneumophila in premise plumbing poses a public health threat. Extended water treatment using physicochemical and biofiltration processes, including slow sand filtration, at four surface water supplies in The Netherlands reduces the microbial growth potential of the treated water to a minimum level, and the distributed drinking water complies with high quality standards. However, heating of the water in warm tap water installations increases the concentration of easily assimilable organic compounds, thereby promoting biofilm formation and growth of L. pneumophila Prevention of biofilm formation in plumbing systems by maintenance of a disinfectant residual during distribution and/or further natural organic matter (NOM) removal is not feasible in the supplies studied. Temperature management in combination with optimized hydraulics and material selection are therefore essential to prevent growth of L. pneumophila in premise plumbing systems. Still, reducing the concentration of biodegradable compounds in drinking water by appropriate water treatment is important for limiting the Legionella growth potential.


Assuntos
Biofilmes/crescimento & desenvolvimento , Água Potável/microbiologia , Filtração/métodos , Legionella pneumophila/crescimento & desenvolvimento , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/fisiologia , Purificação da Água/métodos , Amoeba/microbiologia , Água Potável/química , Legionella/crescimento & desenvolvimento , Países Baixos , Cloreto de Polivinila , Proteobactérias/classificação , Saúde Pública , Dióxido de Silício , Temperatura , Microbiologia da Água , Abastecimento de Água
4.
Water Res ; 125: 270-279, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28865376

RESUMO

Slow sand filtration is the final treatment step at four surface-water supplies in the Netherlands. The microbial growth potential (MGP) of the finished water was measured with the assimilable organic carbon (AOC) method using pure cultures and the biomass production potential (BPP) test. In the BPP test, water samples were incubated untreated at 25 °C and the active-biomass concentration was measured by adenosine tri-phosphate (ATP) analysis. Addition of a river-water inoculum improved the test performance and characteristic growth and maintenance profiles of the water were obtained. The maximum ATP concentration attained within seven days and the cumulative biomass production after 14 days of incubation (BPC14, d ng ATP L-1) showed highly significant and strong linear relationships with the AOC in the slow sand filtrates. The lowest AOC and BPC14 levels were observed in the supplies applying dune filtration without ozonation in post treatment, with AOC/TOC = 1.7 ± 0.3 µg acetate-C equivalents mg-1 C and BPC14/TOC = 16.3 ± 2.2 d ng ATP mg-1 C, corresponding with 1.2 ± 0.19 ng ATP mg-1 C. These characteristics may represent the lowest specific MGP of natural organic matter achievable by biofiltration at temperatures ≤20 °C. The AOC and BPC14 concentrations in the slow sand filtrate of the supply treating lake water by ozonation with granular-activated-carbon filtration and slow sand filtration as post treatment increased with decreasing temperature. The BPP test revealed that this slow sand filtrate sampled at 2 °C contained growth-promoting compounds that were not detected with the AOC test. These observations demonstrate the utility of the BPP test for assessing the MGP of drinking water and show the performance limits of biofiltration for MGP reduction.


Assuntos
Água Potável/microbiologia , Purificação da Água/métodos , Abastecimento de Água , Biomassa , Carbono/análise , Filtração/métodos , Lagos/microbiologia , Países Baixos , Compostos Orgânicos/análise , Dióxido de Silício , Temperatura
5.
Water Res ; 46(15): 4665-76, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22763289

RESUMO

An ever-growing need exists for rapid, quantitative and meaningful methods to quantify and characterize the effect of different treatment steps on the microbiological processes and events that occur during drinking water treatment and distribution. Here we compared cultivation-independent flow cytometry (FCM) and adenosine tri-phosphate (ATP) analysis with conventional cultivation-based microbiological methods, on water samples from two full-scale treatment and distribution systems. The two systems consist of nearly identical treatment trains, but their raw water quality and pre-treatment differed significantly. All of the drinking water treatment processes affected the microbiological content of the water considerably, but once treated, the finished water remained remarkably stable throughout the distribution system. Both the FCM and ATP data were able to describe the microbiology of the systems accurately, providing meaningful process data when combined with other parameters such as dissolved organic carbon analysis. Importantly, the results highlighted a complimentary value of the two independent methods: while similar trends were mostly observed, variations in ATP-per-cell values between water samples were adequately explained by differences in the FCM fingerprints of the samples. This work demonstrates the value of alternative microbial methods for process/system control, optimization and routine monitoring of the general microbial quality of water during treatment and distribution.


Assuntos
Trifosfato de Adenosina/análise , Desinfecção , Citometria de Fluxo/métodos , Abastecimento de Água , Aeromonas/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Biomassa , Contagem de Colônia Microbiana , Filtração , Microbiologia da Água
6.
Appl Environ Microbiol ; 77(3): 1041-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21148700

RESUMO

Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase the pH and facilitate the process of precipitation on an added seeding material. Here we describe for the first time the opportunistic bacterial colonization of the calcite pellets in a full-scale pellet softening reactor and the functional contribution of these colonizing bacteria to the overall drinking water treatment process. ATP analysis, advanced microscopy, and community fingerprinting with denaturing gradient gel electrophoretic (DGGE) analysis were used to characterize the biomass on the pellets, while assimilable organic carbon (AOC), dissolved organic carbon, and flow cytometric analysis were used to characterize the impact of the biological processes on drinking water quality. The data revealed pellet colonization at concentrations in excess of 500 ng of ATP/g of pellet and reactor biomass concentrations as high as 220 mg of ATP/m(3) of reactor, comprising a wide variety of different microorganisms. These organisms removed as much as 60% of AOC from the water during treatment, thus contributing toward the biological stabilization of the drinking water. Notably, only a small fraction (about 60,000 cells/ml) of the bacteria in the reactors was released into the effluent under normal conditions, while the majority of the bacteria colonizing the pellets were captured in the calcite structures of the pellets and were removed as a reusable product.


Assuntos
Bactérias/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Carbonato de Cálcio/química , Purificação da Água/métodos , Abrandamento da Água/métodos , Abastecimento de Água , Bactérias/química , Bactérias/genética , Biomassa , Biotecnologia/métodos , Carbono/análise , Ingestão de Líquidos , Água/química , Microbiologia da Água
7.
FEMS Microbiol Ecol ; 48(1): 29-38, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19712428

RESUMO

The novel phosphatase substrate, ELF-97 phosphate, yields intensely green fluorescent precipitates of ELF-97 alcohol (ELFA) upon enzymatic dephosphorylation, and thereby traces phosphatase activity back to its producer. In this study, we show that ELFA fluorescence is a useful tool in flow cytometric analysis of natural phytoplankton populations. Presence of endogenous fluorescent pigments allowed flow cytometric distinction of clusters in the phytoplankton community in Lake Loosdrecht (The Netherlands): Eukaryotes (diatoms and green algae), chlorophyll a and b containing but phycobilin-less cyanobacteria (Prochlorothrix hollandica), and phycocyanin-containing cyanobacteria (predominantly Limnothrix sp.). Several, but not all tested cyanobacteria showed ELFA fluorescence. The dominant Limnothrix sp. possesses a derepressible phosphatase, whereas the second most abundant strain, P. hollandica, did not have phosphatase activity. Within both natural and cultured populations of Limnothrix sp. we found discernible levels of ELFA fluorescence, indicating the presence of subpopulations with different physiological characteristics.


Assuntos
Cianobactérias/metabolismo , Citometria de Fluxo/métodos , Fluorescência , Fosfatos/análise , Fitoplâncton/química , Precipitação Química , Cianobactérias/química , Países Baixos , Compostos Organofosforados/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fitoplâncton/metabolismo , Quinazolinonas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...