Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(7): 2675-2692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600764

RESUMO

The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH4-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO2 draw-down during the Eocene geological past.


Assuntos
Gleiquênias , Lactonas , Simbiose , Animais , Lactonas/metabolismo , Gleiquênias/fisiologia , Gleiquênias/microbiologia , Gleiquênias/efeitos dos fármacos , Dípteros/fisiologia , Glicosilação , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Cianobactérias/genética , Nostoc/fisiologia , Nostoc/genética , Nostoc/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
2.
ACS Synth Biol ; 13(3): 901-912, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445989

RESUMO

In genome engineering, the integration of incoming DNA has been dependent on enzymes produced by dividing cells, which has been a bottleneck toward increasing DNA insertion frequencies and accuracy. Recently, RNA-guided transposition with CRISPR-associated transposase (CAST) was reported as highly effective and specific in Escherichia coli. Here, we developed Golden Gate vectors to test CAST in filamentous cyanobacteria and to show that it is effective in Anabaena sp. strain PCC 7120. The comparatively large plasmids containing CAST and the engineered transposon were successfully transferred into Anabaena via conjugation using either suicide or replicative plasmids. Single guide (sg) RNA encoding the leading but not the reverse complement strand of the target were effective with the protospacer-associated motif (PAM) sequence included in the sgRNA. In four out of six cases analyzed over two distinct target loci, the insertion site was exactly 63 bases after the PAM. CAST on a replicating plasmid was toxic, which could be used to cure the plasmid. In all six cases analyzed, only the transposon cargo defined by the sequence ranging from left and right elements was inserted at the target loci; therefore, RNA-guided transposition resulted from cut and paste. No endogenous transposons were remobilized by exposure to CAST enzymes. This work is foundational for genome editing by RNA-guided transposition in filamentous cyanobacteria, whether in culture or in complex communities.


Assuntos
Anabaena , Cianobactérias , Humanos , RNA Guia de Sistemas CRISPR-Cas , RNA , Plasmídeos/genética , Anabaena/genética , Cianobactérias/genética , DNA , Escherichia coli/genética , Elementos de DNA Transponíveis/genética
3.
Front Plant Sci ; 12: 693039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456937

RESUMO

Water ferns of the genus Azolla and the filamentous cyanobacteria Nostoc azollae constitute a model symbiosis that enabled the colonization of the water surface with traits highly desirable for the development of more sustainable crops: their floating mats capture CO2 and fix N2 at high rates using light energy. Their mode of sexual reproduction is heterosporous. The regulation of the transition from the vegetative phase to the spore forming phase in ferns is largely unknown, yet a prerequisite for Azolla domestication, and of particular interest as ferns represent the sister lineage of seed plants. Sporocarps induced with far red light could be crossed so as to verify species attribution of strains from the Netherlands but not of the strain from the Anzali lagoon in Iran; the latter strain was assigned to a novel species cluster from South America. Red-dominated light suppresses the formation of dissemination stages in both gametophyte- and sporophyte-dominated lineages of plants, the response likely is a convergent ecological strategy to open fields. FR-responsive transcripts included those from MIKCC homologues of CMADS1 and miR319-controlled GAMYB transcription factors in the fern, transporters in N. azollae, and ycf2 in chloroplasts. Loci of conserved microRNA (miRNA) in the fern lineage included miR172, yet FR only induced miR529 and miR535, and reduced miR319 and miR159. Phylogenomic analyses of MIKCC TFs suggested that the control of flowering and flower organ specification may have originated from the diploid to haploid phase transition in the homosporous common ancestor of ferns and seed plants.

4.
New Phytol ; 229(2): 1118-1132, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858769

RESUMO

Questions about in vivo substrates for proanthocyanidin (PA) biosynthesis and condensation have not been resolved and wide gaps in the understanding of transport and biogenesis in 'tannosomes' persist. Here we examined the evolution of PA biosynthesis in ferns not previously reported, asking what PAs are synthesised and how. Chemical and gene-expression analyses were combined to characterise PA biosynthesis, leveraging genome annotation from the floating fern Azolla filiculoides. In vitro assay and phylogenomics of PIP-dehydrogenases served to infer the evolution of leucoanthocyanidin reductase (LAR). Sporophyte-synthesised (epi)catechin polymers, averaging only seven subunits, accumulated to 5.3% in A. filiculoides, and 8% in A. pinnata biomass dry weight. Consistently, a LAR active in vitro was highly expressed in A. filiculoides. LAR, and paralogous fern WLAR-enzymes with differing substrate binding sites, represent an evolutionary innovation of the common ancestor of fern and seed plants. The specific ecological niche of Azolla ferns, a floating plant-microbe mat massively fixing CO2 and N2 , shaped their metabolism in which PA biosynthesis predominates and employs novel fern LAR enzymes. Characterisation of in vivo substrates of these LAR, will help to shed light on the recently assigned and surprising dual catalysis of LAR from seed plants.


Assuntos
Catequina , Gleiquênias , Antocianinas , Gleiquênias/genética , Oxirredutases , Sementes
5.
New Phytol ; 217(1): 453-466, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29084347

RESUMO

Dinitrogen fixation by Nostoc azollae residing in specialized leaf pockets supports prolific growth of the floating fern Azolla filiculoides. To evaluate contributions by further microorganisms, the A. filiculoides microbiome and nitrogen metabolism in bacteria persistently associated with Azolla ferns were characterized. A metagenomic approach was taken complemented by detection of N2 O released and nitrogen isotope determinations of fern biomass. Ribosomal RNA genes in sequenced DNA of natural ferns, their enriched leaf pockets and water filtrate from the surrounding ditch established that bacteria of A. filiculoides differed entirely from surrounding water and revealed species of the order Rhizobiales. Analyses of seven cultivated Azolla species confirmed persistent association with Rhizobiales. Two distinct nearly full-length Rhizobiales genomes were identified in leaf-pocket-enriched samples from ditch grown A. filiculoides. Their annotation revealed genes for denitrification but not N2 -fixation. 15 N2 incorporation was active in ferns with N. azollae but not in ferns without. N2 O was not detectably released from surface-sterilized ferns with the Rhizobiales. N2 -fixing N. azollae, we conclude, dominated the microbiome of Azolla ferns. The persistent but less abundant heterotrophic Rhizobiales bacteria possibly contributed to lowering O2 levels in leaf pockets but did not release detectable amounts of the strong greenhouse gas N2 O.


Assuntos
Alphaproteobacteria/fisiologia , Gleiquênias/microbiologia , Nitrogênio/metabolismo , Nostoc/fisiologia , Oxigênio/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Biomassa , Desnitrificação , Endófitos , Gleiquênias/crescimento & desenvolvimento , Metagenoma , Microbiota , Fixação de Nitrogênio , Isótopos de Nitrogênio/análise , Nostoc/genética , Nostoc/isolamento & purificação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Água , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...