Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(8)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941965

RESUMO

Since 1998, notifiable bluetongue virus (BTV) serotypes 1-4, 6, 8, 9, 11, and 16 have been reported in Europe. In August 2006, a bluetongue (BT) outbreak caused by BTV serotype 8 began in northwestern Europe. The Netherlands was declared BT-free in February 2012, and annual monitoring continued. On September 3, 2023, typical BT clinical manifestations in sheep were notified to the Netherlands Food and Product Safety Consumer Authority. On September 6, we confirmed BTV infection through laboratory diagnosis; notifications of clinical signs in cattle were also reported. We determined the virus was serotype 3 by whole-genome sequencing. Retrospective analysis did not reveal BTV circulation earlier than September. The virus source and introduction route into the Netherlands remains unknown. Continuous monitoring and molecular diagnostic testing of livestock will be needed to determine virus spread, and new prevention strategies will be required to prevent BTV circulation within the Netherlands and Europe.

2.
Pathogens ; 11(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35745489

RESUMO

In contemporary society and modern livestock farming, a monitoring and surveillance system for animal health has become indispensable. In addition to obligations arising from European regulations regarding monitoring and surveillance of animal diseases, The Netherlands developed a voluntary system for the monitoring and surveillance of small ruminant health. This system aims for (1) early detection of outbreaks of designated animal diseases, (2) early detection of yet unknown disease conditions, and (3) insight into trends and developments. To meet these objectives, a system is in place based on four main surveillance components, namely a consultancy helpdesk, diagnostic services, multiple networks, and an annual data analysis. This paper describes the current system and its ongoing development and gives an impression of nearly twenty years of performance by providing a general overview of key findings and three elaborated examples of notable disease outbreaks. Results indicate that the current system has added value to the detection of various (re)emerging and new diseases. Nevertheless, animal health monitoring and surveillance require a flexible approach that is able to keep pace with changes and developments within the industry. Therefore, monitoring and surveillance systems should be continuously adapted and improved using new techniques and insights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...