Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825557

RESUMO

Root nitrogen (N) reallocation involves remobilization of root N-storage pools to support shoot growth. Representing a critical yet underexplored facet of plant function, we developed innovative frameworks to elucidate its connections with key ecosystem components. First, root N reallocation increases with plant species richness and N-acquisition strategies, driven by competitive stimulation of plant N demand and synergies in N uptake. Second, competitive root traits and mycorrhizal symbioses, which enhance N foraging and uptake, exhibit trade-offs with root N reallocation. Furthermore, root N reallocation is attenuated by N-supply attributes such as increasing litter quality, soil fungi-to-bacteria ratios, and microbial recruitment in the hyphosphere/rhizosphere. These frameworks provide new insights and research avenues for understanding the ecological roles of root N reallocation.

2.
Environ Pollut ; 310: 119892, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932895

RESUMO

The interactions of plastics and soil organisms are complex and inconsistent observations on the effects of plastics on soil organisms have been made in published studies. In this study, we assessed the effects of plastic exposure on plants, fauna and microbial communities, with a meta-analysis. Using a total of 2936 observations from 140 publications, we analysed how responses in plants, soil fauna and microorganisms depended on the plastic concentration, size, type, species and exposure media. We found that overall plastics caused substantial detrimental effects to plants and fauna, but less so to microbial diversity and richness. Plastic concentration was one of the most important factors explaining variations in plant and faunal responses. Larger plastics (>1 µm) caused unfavourable changes to plant growth, germination and oxidative stress, while nanoplastics (NPs; ≤ 1 µm) only increased oxidative stress. On the contrary, there was a clear trend showing that small plastics adversely affected fauna reproduction, survival and locomotion than large plastics. Plant responses were indifferent to plastic type, with most studies conducted using polyethylene (PE) and polystyrene (PS) plastics, but soil fauna were frequently more sensitive to PS than to PE exposure. Plant species played a vital role in some parameters, with the effects of plastics being considerably greater on vegetable plants than on cereal plants.


Assuntos
Plásticos , Solo , Ecotoxicologia , Plantas , Poliestirenos
3.
Front Plant Sci ; 13: 927435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812934

RESUMO

Photosynthetically derived carbon (C) is allocated belowground, allowing plants to obtain nutrients. However, less is known about the amount of nutrients acquired relative to the C allocated belowground, which is referred to as C efficiency for nutrient acquisition (CENA). Here, we examined how C efficiency for nitrogen (N) and phosphorus (P) acquisition varied between ryegrass (Lolium perenne) and clover (Trifolium repens) with and without P fertilization. A continuous 13C-labeling method was applied to track belowground C allocation. Both species allocated nearly half of belowground C to rhizosphere respiration (49%), followed by root biomass (37%), and rhizodeposition (14%). With regard to N and P, CENA was higher for clover than for ryegrass, which remained higher after accounting for relatively low C costs associated with biological N2 fixation. Phosphorus fertilization increased the C efficiency for P acquisition but decreased the C efficiency for N acquisition. A higher CENA for N and P in clover may be attributed to the greater rhizosphere priming on soil organic matter decomposition. Increased P availability with P fertilization could induce lower C allocation for P uptake but exacerbate soil N limitation, thereby making N uptake less C efficient. Overall, our study revealed that species-specific belowground C allocation and nutrient uptake efficiency depend on which nutrient is limited.

4.
Sci Total Environ ; 846: 157430, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863579

RESUMO

Grassland plants allocate photosynthetically fixed carbon (C) belowground to root biomass and rhizodeposition, but also to support arbuscular mycorrhizal fungi (AMF). These C allocation pathways could increase nutrient scavenging, but also mining of nutrients through enhanced organic matter decomposition. While important for grassland ecosystem functioning, methodological constraints have limited our ability to measure these processes under field conditions. We used 13CO2 and 15N pulse labelling methods to examine belowground C allocation to root biomass production, rhizodeposition and AMF colonisation during peak plant growth in a grassland field experiment after three years of N fertilisation (0 and 40 kg N ha-1 year-1) and defoliation frequency treatments ("low" and "high", with 3-4 and 6-8 simulated grazing events per year, mimicking moderate and intense grazing, respectively). Moreover, we quantified the consequences for plant nitrogen (N) uptake and decomposition of soil organic C (SOC). Nitrogen fertilisation increased rhizodeposition and AMF colonisation (by 63 % and 54 %), but reduced root biomass (by 25 %). With high defoliation frequency, AMF colonisation increased (by 60 %), but both root biomass and rhizodeposition declined (by 35 % and 58 %). Plant N uptake was highest without N fertilisation and low defoliation frequency, and positively related to root biomass and the number of root tips. Therefore, when N supply is low and the capacity to produce C through photosynthesis is high, belowground C allocation to root production and associated root tips was important to scavenge for N in the soil. In contrast, the strong positive relationship between the rate of rhizodeposition and SOC decomposition, suggests that rhizodeposition may help plants to mine for nutrients locked in SOC. Taken together, the results of this study suggest that belowground C allocation pathways affected by N fertilisation and defoliation frequency affect plant N scavenging and mining with important consequences for long-term grassland C dynamics.


Assuntos
Micorrizas , Solo , Biomassa , Carbono/metabolismo , Ecossistema , Micorrizas/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo
5.
Sci Total Environ ; 810: 152244, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896135

RESUMO

Nitrogen (N) fertilization and plastic film mulching (PFM) are two widely applied management practices for crop production. Both of them impact soil organic matter individually, but their interactive effects as well as the underlying mechanisms are unknown. Soils from a 28-year field experiment with maize monoculture under three levels of N fertilization (0, 135, and 270 kg N ha-1 yr-1) and with or without PFM were analyzed for soil organic C (SOC) content, total soil nitrogen (N), root biomass, enzyme activities, and SOC mineralization rates. After 28 years, N fertilization increased root biomass and consequently, SOC by 26% (averaged across the two fertilizer application rates) and total soil N by 25%. These increases, however, were only in soil with PFM, as PFM reduced N leaching and loss, as a result of a diurnal internal water cycle under the mulch. The SOC mineralization was slower with N fertilization, regardless of the PFM treatment. This trend was attributed to the 43% decrease of ß-glucosidase activity (C cycle enzyme) and 51% drop of leucine aminopeptidase (N cycle) with N fertilization, as a result of a strong decrease in soil pH. In conclusion, root biomass acting as the main source of soil C, resulted in an increase of soil organic matter after 28 year of N fertilization only with PFM.


Assuntos
Nitrogênio , Solo , Agricultura , Biomassa , Carbono , Fertilização , Fertilizantes/análise , Nitrogênio/análise , Plásticos , Zea mays
6.
Ecology ; 103(3): e3616, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923633

RESUMO

Phosphorus (P) limitation is expected to increase due to nitrogen (N)-induced terrestrial eutrophication, although most soils contain large P pools immobilized in minerals (Pi ) and organic matter (Po ). Here we assessed whether transformations of these P pools could increase plant available pools alleviating P limitation under enhanced N availability. The mechanisms underlying these possible transformations were explored by combining results from a 10-year field N addition experiment and a 3700-km transect covering wide ranges in soil pH, soil N, aridity, leaching, and weathering that could affect soil P status in grasslands. Nitrogen addition promoted the dissolution of immobile Pi (mainly Ca-bound recalcitrant P) to more available forms of Pi (including Al- and Fe-bound P fractions and Olsen P) by decreasing soil pH from 7.6 to 4.7, but did not affect Po . Soil total P declined by 10% from 385 ± 6.8 to 346 ± 9.5 mg kg-1 , whereas available P increased by 546% from 3.5 ± 0.3 to 22.6 ± 2.4 mg kg-1 after the 10-year N addition, associated with an increase in Pi mobilization, plant uptake, and leaching. Similar to the N addition experiment, the drop in soil pH from 7.5 to 5.6 and increase in soil N concentration along the grassland transect were associated with an increased ratio between relatively mobile Pi and immobile Pi . Our results provide a new mechanistic understanding of the important role of soil Pi mobilization in maintaining plant P supply and accelerating biogeochemical P cycles under anthropogenic N enrichment. This mobilization process temporarily buffers ecosystem P limitation or even causes P eutrophication, but will extensively deplete soil P pools in the long run.


Assuntos
Fósforo , Solo , Ecossistema , Pradaria , Minerais , Nitrogênio/análise
7.
Front Plant Sci ; 12: 711720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421960

RESUMO

Plants spend a high proportion of their photosynthetically fixed carbon (C) belowground to support mycorrhizal associations in return for nutrients, but this C expenditure may decrease with increased soil nutrient availability. In this study, we assessed how the effects of nitrogen (N) fertiliser on specific root respiration (SRR) varied among mycorrhizal type (Myco type). We conducted a multi-level meta-analysis across 1,600 observations from 32 publications. SRR increased in ectomycorrhizal (ECM) plants with more than 100 kg N ha-1 applied, did not change in arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) plants, but increased in plants with a dual mycorrhizal association in response to N fertilisation. Our results suggest that high N availability (>100 kg N ha-1) could disadvantage the growth of ECM plants because of increased C costs associated with maintaining higher root N concentrations, while the insensitivity in SRR by AM plants to N fertilisation may be because AM fungi are more important for phosphorus (P) uptake.

8.
New Phytol ; 230(2): 857-866, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33253439

RESUMO

Rhizodeposition plays an important role in below-ground carbon (C) cycling. However, quantification of rhizodeposition in intact plant-soil systems has remained elusive due to methodological issues. We used a 13 C-CO2 pulse-labelling method to quantify the contribution of rhizodeposition to below-ground respiration. Intact plant-soil cores were taken from a grassland field, and in half, shoots and roots were removed (unplanted cores). Both unplanted and planted cores were assigned to drought and nitrogen (N) treatments. Afterwards, shoots in planted cores were pulse labelled with 13 C-CO2 and then clipped to determine total below-ground respiration and its δ13 C. Simultaneously, δ13 C was measured for the respiration of live roots, soils with rhizodeposits, and unplanted treatments, and used as endmembers with which to determine root respiration and rhizodeposit C decomposition using two-source mixing models. Rhizodeposit decomposition accounted for 7-31% of total below-ground respiration. Drought reduced decomposition of both rhizodeposits and soil organic carbon (SOC), while N addition increased root respiration but not the contribution of rhizodeposit C decomposition to below-ground respiration. This study provides a new approach for the partitioning of below-ground respiration into different sources, and indicates that decomposition of rhizodeposit C is an important component of below-ground respiration that is sensitive to drought and N addition in grassland ecosystems.


Assuntos
Nitrogênio , Solo , Carbono , Secas , Ecossistema , Pradaria , Raízes de Plantas , Respiração
9.
New Phytol ; 230(1): 60-65, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33197279

RESUMO

From recent developments on how roots affect soil organic carbon (SOC) an apparent paradox has emerged where roots drive SOC stabilization causing SOC accrual, but also SOC destabilization causing SOC loss. We synthesize current results and propose the new Rhizo-Engine framework consisting of two linked components: microbial turnover and the soil physicochemical matrix. The Rhizo-Engine is driven by rhizodeposition, root turnover, and plant uptake of nutrients and water, thereby accelerating SOC turnover through both stabilization and destabilization mechanisms. This Rhizo-Engine framework emphasizes the need for a more holistic approach to study root-driven SOC dynamics. This framework would provide better understanding of plant root effects on soil carbon sequestration and the sensitivity of SOC stocks to climate and land-use changes.


Assuntos
Carbono , Solo , Sequestro de Carbono , Clima , Plantas
10.
Sci Total Environ ; 671: 786-794, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30943445

RESUMO

Availability of phosphorus (P) can directly and/or indirectly affect nitrogen (N) retention and loss from soil by stimulating microbial and plant root activities. However, it is not clear how P availability and plant presence interact on nitrous oxide (N2O) emission and nitrate (NO3-) leaching in soil. A mesocosm experiment was conducted to investigate the effect of P addition (0, 10 and 20 mg P kg-1) with and without plant presence (Phalaris aquatica, C3 grass) on N2O emission, NO3- leaching and 15N recovery. Our results showed large variation in N2O emission with significant increases after leaching events. We observed that initially low but later (after 53 days of sowing) high levels of P addition increased N2O emission rates, possibly by stimulating nitrifiers and/or denitrifiers in soil. Plant presence decreased N2O emission at times when plants reduced water and NO3- in the soil, but increased N2O emission at times when both water and NO3- in the soil were abundant, and where plants may have stimulated denitrification through supply of labile organic C. Furthermore, an increase in net N mineralization, possibly due to increased decomposition stimulated by root derived C, may also have contributed to the higher cumulative N2O emission with plant presence. P addition increased 15N recovery in soil, but reduced it in leachates, suggesting increased 15N fixation in microbial biomass. Our results showed that both P addition and plant presence stimulated N loss as N2O, but also increased N retention in the soil-plant system and thus reduced N loss through leaching.


Assuntos
Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Poluentes do Solo/análise , Desnitrificação , Solo/química
11.
PeerJ ; 7: e6712, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30993045

RESUMO

Soil microbial processes are crucial for understanding the ecological functions of arid and semi-arid lands which occupy approximately 40% of the global terrestrial ecosystems. However, how soil microbial metabolic activities may change across a wide aridity gradient in drylands remains unclear. Here, we investigated three soil microbial metabolic indices (soil organic carbon (SOC)-based microbial respiration, metabolic quotient, and microbial biomass as a proportion of total SOC) and the degree of carbon limitation for microbial respiration along a 3,200 km transect with a wide aridity gradient. The aridity gradient was customarily expressed using the aridity index (AI) which was calculated as the ratio of mean annual precipitation to mean annual evaporation, therefore, a lower AI value indicated a higher degree of aridity. Our results showed non-linear relationships between AI values and the metabolic indices with a clear aridity threshold for each of the three metabolic indices along the aridity gradient, respectively (AI = 0.13 for basal respiration, AI = 0.17 for metabolic quotient, and AI = 0.17 for MBC:SOC ratio). These metabolic indices linearly declined when AI was above the thresholds, but did not show any clear patterns when AI was below the thresholds. We also found that soil microbial respiration was highly limited by available carbon substrates at locations with higher primary production and relatively lower level of water limitation when AI was above the threshold, a counter-intuitive pattern that microbes were more starved in ecosystems with more substrate input. However, the increasing level of carbon limitation did correspond to the declining trend of the three metabolic indices along the AI gradient, which indicates that the carbon limitation influences microbial metabolism. We also found that the ratio of microbial biomass carbon to SOC in arid regions (AI < 0.2) with extremely low precipitation and primary production were not quantitatively related to SOC content. Overall, our results imply that microbial metabolism is distinctively different in arid lands than in non-arid lands.

12.
Ecology ; 99(10): 2230-2239, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30157292

RESUMO

The allocation and stoichiometry of plant nutrients in leaves reflect fundamental ecosystem processes, biotic interactions, and environmental drivers such as water availability. Climate change will lead to increases in drought severity and frequency, but how canopy nutrients will respond to drought, and how these responses may vary with community composition along aridity gradients is poorly understood. We experimentally addressed this issue by reducing precipitation amounts by 66% during two consecutive growing seasons at three sites located along a natural aridity gradient. This allowed us to assess drought effects on canopy nitrogen (N) and phosphorus (P) concentrations in arid and semiarid grasslands of northern China. Along the aridity gradient, canopy nutrient concentrations were positively related to aridity, with this pattern was driven primarily by species turnover (i.e., an increase in the relative biomass of N- and P-rich species with increasing aridity). In contrast, drought imposed experimentally increased N but decreased P concentrations in plant canopies. These changes were driven by the combined effects of species turnover and intraspecific variation in leaf nutrient concentrations. In addition, the sensitivity of canopy N and P concentrations to drought varied across the three sites. Canopy nutrient concentrations were less affected by drought at drier than wetter sites, because of the opposing effects of species turnover and intraspecific variation, as well as greater drought tolerance for nutrient-rich species. These contrasting effects of long-term aridity vs. short-term drought on canopy nutrient concentrations, as well as differing sensitivities among sites in the same grassland biome, highlight the challenge of predicting ecosystem responses to future climate change.


Assuntos
Secas , Ecossistema , China , Mudança Climática , Nutrientes
13.
J Environ Manage ; 224: 77-86, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031921

RESUMO

Anthropogenic nitrogen (N) enrichment can significantly alter soil chemical properties in various ecosystems. Previous manipulative N experiments mainly focused on the intensity of N addition on soil properties by changing N input rates. It remains unclear, however, whether frequency of N addition can affect soil chemical properties. We examined the effects of frequency (2 versus 12 applications yr-1) and rate (ranging from 0 to 50 g N m-2 yr-1) of N addition on soil chemical properties of pH, base cations, soil pH buffering capacity (pHBC), and soil available micronutrients in a temperate steppe with and without mowing. Mowing significantly increased the effective cation exchange capacity (ECEC), soil exchangeable Ca and Na, available Fe, and soil pHBC when N was applied at low frequency. Low frequency of N addition significantly decreased soil pH and exchangeable Na but increased soil exchangeable Mg without mowing; however, it increased soil exchangeable Na and available Zn with mowing, while available Fe and Mn increased both with and without mowing. Higher rates of N addition (≥20 g N m-2 yr-1) decreased soil pH, ECEC and exchangeable Ca but increased soil available Fe, Mn and Cu regardless of the mowing treatment and frequency of N addition. Changes in soil organic matter, pHBC and ECEC were the main reasons affecting soil pH across mowing and N application treatments. Our results indicate that frequency of N addition played an essential role in altering soil chemical properties. Simulating N deposition via large and infrequent N additions can underestimate (exchangeable Mg and available Fe and Mn) or overestimate (soil pH and exchangeable Na) changes in soil properties. Our results further suggest that the effects of frequency of N addition on soil chemical attributes in semi-arid grassland ecosystems can be regulated by appropriate mowing management.


Assuntos
Nitrogênio , Microbiologia do Solo , Solo/química , Ecossistema
14.
Oecologia ; 188(2): 633-643, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30043231

RESUMO

Both the dominance and the mass ratio hypotheses predict that plant internal nutrient cycling in ecosystems is determined by the dominant species within plant communities. We tested this hypothesis under conditions of extreme drought by assessing plant nutrient (N, P and K) uptake and resorption in response to experimentally imposed precipitation reductions in two semiarid grasslands of northern China. These two communities shared similar environmental conditions, but had different dominant species-one was dominated by a rhizomatous grass (Leymus chinensis) and the other by a bunchgrass (Stipa grandis). Results showed that responses of N to drought differed between the two communities with drought decreasing green leaf N concentration and resorption in the community dominated by the rhizomatous grass, but not in the bunchgrass-dominated community. In contrast, negative effects of drought on green leaf P and K concentrations and their resorption efficiencies were consistent across the two communities. Additionally, in each community, the effects of extreme drought on soil N, P and K supply did not change synchronously with that on green leaf N, P and K concentrations, and senesced leaf N, P and K concentrations showed no response to extreme drought. Consistent with the dominance/mass ratio hypothesis, our findings suggest that differences in dominant species and their growth form (i.e., rhizomatous vs bunch grass) play an important nutrient-specific role in mediating plant internal nutrient cycling across communities within a single region.


Assuntos
Secas , Ecossistema , China , Pradaria , Nitrogênio , Nutrientes
15.
Ecosystems ; 21(2): 349-359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29540992

RESUMO

Drought is predicted to increase in many areas of the world with consequences for soil carbon (C) dynamics. Plant litter, root exudates and microbial biomass can be used as C substrates to form organo-mineral complexes. Drought effects on plants and microbes could potentially compromise these relative stable soil C pools, by reducing plant C inputs and/or microbial activity. We conducted a 2-year drought experiment using rainout shelters in a semi-natural grassland. We measured aboveground biomass and C and nitrogen (N) in particulate organic matter (Pom), the organo-mineral fraction (Omin), and microbial biomass within the first 15 cm of soil. Aboveground plant biomass was reduced by 50% under drought in both years, but only the dominant C4 grasses were significantly affected. Soil C pools were not affected by drought, but were significantly higher in the relatively wet second year compared to the first year. Omin-C was positively related to microbial C during the first year, and positively related to clay and silt content in the second year. Increases in Omin-C in the second year were explained by increases in legume biomass and its effect on Pom-N and microbial biomass N (MBN) through structural equation modeling. In conclusion, soil C pools were unaffected by the drought treatment. Drought resistant legumes enhanced formation of organo-mineral complexes through increasing Pom-N and MBN. Our findings also indicate the importance of microbes for the formation of Omin-C as long as soil minerals have not reached their maximum capacity to bind with C (that is, saturation).

16.
Ecol Lett ; 21(5): 674-682, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29508508

RESUMO

Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change.


Assuntos
Dióxido de Carbono , Nitrogênio , Água , Biomassa , Pradaria , Poaceae , Solo
17.
New Phytol ; 218(3): 1036-1048, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512165

RESUMO

Rhizosphere priming effects (RPEs) play a central role in modifying soil organic matter mineralization. However, effects of tree species and intraspecific competition on RPEs are poorly understood. We investigated RPEs of three tree species (larch, ash and Chinese fir) and the impact of intraspecific competition of these species on the RPE by growing them at two planting densities for 140 d. We determined the RPE on soil organic carbon (C) decomposition, gross and net nitrogen (N) mineralization and net plant N acquisition. Differences in the RPE among species were associated with differences in plant biomass. Gross N mineralization and net plant N acquisition increased, but net N mineralization decreased, as the RPE on soil organic C decomposition increased. Intraspecific competition reduced the RPE on soil organic C decomposition, gross and net N mineralization, and net plant N acquisition, especially for ash and Chinese fir. Microbial N mining may explain the overall positive RPEs across species, whereas intensified plant-microbe competition for N may have reduced the RPE with intraspecific competition. Overall, the species-specific effects of tree species play an important role in modulating the magnitude and mechanisms of RPEs and the intraspecific competition on soil C and N dynamics.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Rizosfera , Solo/química , Árvores/fisiologia , Bactérias/crescimento & desenvolvimento , Biomassa , Dióxido de Carbono/metabolismo , Minerais/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Especificidade da Espécie
18.
Environ Sci Technol ; 51(15): 8359-8367, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28632984

RESUMO

Biochar, a form of pyrogenic carbon, can contribute to agricultural and environmental sustainability by increasing soil reactivity. In soils, biochar could change its role over time through alterations in its surface chemistry. However, a mechanistic understanding of the aging process and its role in ionic nutrient adsorption and supply remain unclear. Here, we aged a wood biochar (550 °C) by chemical oxidation with 5-15% H2O2 and investigated the changes in surface chemistry and the adsorption behavior of ammonium and phosphate. Oxidation changed the functionality of biochar with the introduction of carboxylic and phenolic groups, a reduction of oxonium groups and the transformation of pyridine to pyridone. After oxidation, the adsorption of ammonium increased while phosphate adsorption decreased. Ammonium adsorption capacity was nonlinearly related to the biochar's surface charge density (r2 = 0.94) while electrostatic repulsion and loss of positive charge due to destruction of oxonium and pyridine, possibly caused the reduced phosphate adsorption. However, the oxidized biochar substantially adsorbed both ammonium and phosphate when biochar derived organic matter (BDOM) was included. Our results suggest that aging of biochar could reverse its capacity for the adsorption of cationic and anionic species but the inclusion of BDOM could increase ionic nutrient and contaminant retention.


Assuntos
Compostos de Amônio , Carvão Vegetal , Adsorção , Peróxido de Hidrogênio , Fosfatos , Solo
19.
Glob Chang Biol ; 23(10): 4420-4429, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28480591

RESUMO

Rising levels of atmospheric CO2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (<1 year), these effects do not persist in the longer term (1-4 years). Elevated CO2 does not affect the decomposition or the size of the old soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO2 concentrations may be smaller than previously assumed.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Solo/química , Carbono , Ecossistema , Plantas
20.
Glob Chang Biol ; 23(9): 3623-3645, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28145053

RESUMO

Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m-2  yr-1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2 -induced water savings to extend the growing season length. Observed interactive (CO2  × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.


Assuntos
Pradaria , Calefação , Poaceae/crescimento & desenvolvimento , Dióxido de Carbono , Solo , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...