Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1300: 261-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25916717

RESUMO

In order to perform 2-D gel analyses on restriction fragments from higher eukaryotic genomes, it is necessary to remove most of the linear, nonreplicating, fragments from the starting DNA preparation. This is so because the replication intermediates in a single-copy locus constitute such a minute fraction of all of the restriction fragments in a standard DNA preparation-whether isolated from synchronized or asynchronous cultures. Furthermore, the very long DNA strands that characterize higher eukaryotic genomes are inordinately subject to branch migration and shear. We have developed a method that results in significant enrichment of replicating fragments that largely maintain their branched intermediates. The method depends upon two important factors: (1) replicating fragments in higher eukaryotic nuclei appear to be attached to the nuclear matrix in a supercoiled fashion, and (2) partially single-stranded fragments (e.g., those containing replication forks) are selectively adsorbed to benzoylated naphthoylated DEAE (BND)-cellulose in high salt concentrations. By combining matrix-enrichment and BND-cellulose chromatography, it is possible to obtain preparations that are enriched as much as 200-fold over the starting genomic DNA, and are thus suitable for analysis on 2-D gels.


Assuntos
Replicação do DNA , Enzimas de Restrição do DNA/metabolismo , DNA/isolamento & purificação , Eletroforese em Gel Bidimensional/métodos , Genoma , Células 3T3 , Animais , Southern Blotting , Células CHO , Núcleo Celular/metabolismo , Cricetinae , Cricetulus , Células HeLa , Humanos , Camundongos , Suspensões
2.
Chromosome Res ; 18(1): 45-61, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19859818

RESUMO

Studies in our laboratory over the last three decades have shown that the Chinese hamster dihydrofolate reductase (DHFR) origin of replication corresponds to a broad zone of inefficient initiation sites distributed throughout the spacer between the convergently transcribed DHFR and 2BE2121 genes. It is clear from mutational analysis that none of these sites is genetically required for controlling origin activity. However, the integrity of the promoter of the DHFR gene is needed to activate the downstream origin, while the 3' processing signals prevent invasion and inactivation of the downstream origin by transcription forks. Several other origins in metazoans have been shown to correspond to zones of inefficient sites, while a different subset appears to be similar to the fixed replicators that characterize origins in S. cerevisiae and lower organisms. These observations have led us to suggest a model in which the mammalian genome is dotted with a hierarchy of degenerate, redundant, and inefficient replicators at intervals of a kilobase or less, some of which may have evolved to be highly circumscribed and efficient. The activities of initiation sites are proposed to be largely regulated by local transcription and chromatin architecture. Recently, we and others have devised strategies for identifying active origins on a genome-wide scale in order to define their distributions between fixed and dispersive origin types and to detect relationships among origins, genes, and epigenetic markers. The global pictures emerging are suggestive but far from complete and appear to be plagued by some of the same uncertainties that have led to conflicting views of individual origins in the past (particularly DHFR). In this paper, we will trace the history of origin discovery in mammalian genomes, primarily using the well-studied DHFR origin as a model, because it has been analyzed by nearly every available origin mapping technique in several different laboratories, while many origins have been identified by only one. We will address the strengths and shortcomings of the various methods utilized to identify and characterize origins in complex genomes and will point out how we and others were sometimes led astray by false assumptions and biases, as well as insufficient information. The goal is to help guide future experiments that will provide a truly comprehensive and accurate portrait of origins and their regulation. After all, in the words of George Santayana, "Those who do not learn from history are doomed to repeat it."


Assuntos
Origem de Replicação , Tetra-Hidrofolato Desidrogenase/genética , Animais , Cricetinae , Cricetulus , Eletroforese em Gel Bidimensional
3.
Methods Mol Biol ; 521: 121-37, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19563104

RESUMO

In order to perform 2-D gel analyses on restriction fragments from higher eukaryotic genomes, it is necessary to remove most of the linear, nonreplicating, fragments from the starting DNA preparation. This is so because the replication intermediates in a single-copy locus constitute such a minute fraction of all of the restriction fragments in a standard DNA preparation - whether isolated from synchronized or asynchronous cultures. Furthermore, the very long DNA strands that characterize higher eukaryotic genomes are inordinately subject to branch migration and shear. We have developed a method that results in significant enrichment of replicating fragments that largely maintain their branched intermediates. The method depends upon two important factors: (1) replicating fragments in higher eukaryotic nuclei appear to be attached to the nuclear matrix in a supercoiled fashion, and (2) partially single-stranded fragments (e.g., those containing replication forks) are selectively adsorbed to benzoylated napthoylated DEAE (BND)-cellulose in high salt conCentrations. By combining matrix-enrichment and BND-cellulose chromatography, it is possible to obtain preparations that are enriched as much as 200-fold over the starting genomic DNA and are thus suitable for analysis on 2-D gels.


Assuntos
Replicação do DNA , DNA/isolamento & purificação , Eletroforese em Gel Bidimensional/métodos , Animais , Southern Blotting , Células CHO , Ciclo Celular , Fracionamento Celular , Cromatografia DEAE-Celulose/métodos , Cricetinae , Cricetulus , DEAE-Celulose/análogos & derivados , DNA/biossíntese , DNA/genética , Células HeLa , Humanos , Replicon
4.
Mol Cell Biol ; 22(9): 3053-65, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11940663

RESUMO

Previous radiolabeling and two-dimensional (2-D) gel studies of the dihydrofolate reductase (DHFR) domain of Chinese hamster cells have suggested that replication can initiate at any one of a very large number of inefficient sites scattered throughout the 55-kb intergenic spacer region, with two broad subregions (ori-beta and ori-gamma) preferred. However, high-resolution analysis by a PCR-based nascent strand abundance assay of the 12-kb subregion encompassing ori-beta has suggested the presence of a relatively small number of fixed, highly efficient initiation sites distributed at infrequent intervals that correspond to genetic replicators. To attempt to reconcile these observations, two different approaches were taken in the present study. In the first, neutral-neutral 2-D gel analysis was used to examine replication intermediates in 31 adjacent and overlapping restriction fragments in the spacer, ranging in size from 1.0 to 18 kb. Thirty of 31 fragments displayed the complete bubble arcs characteristic of centered origins. Taking into account overlapping fragments, these data suggest a minimum of 14 individual start sites in the spacer. In the second approach, a quantitative early labeled fragment hybridization assay was performed in which radioactive origin-containing DNA 300 to 1,000 nucleotides in length was synthesized in the first few minutes of the S period and used to probe 15 clones distributed throughout the intergenic spacer but separated on average by more than 1,000 bp. This small nascent DNA fraction hybridized to 14 of the 15 clones, ranging from just above background to a maximum at the ori-beta locus. The only silent region detected was a small fragment lying just upstream from a centered matrix attachment region--the same region that was also negative for initiation by 2-D gel analysis. Results of both approaches suggest a minimum of approximately 20 initiation sites in the spacer (two of them being ori-beta and ori-gamma), with ori-beta accounting for a maximum of approximately 20% of initiations occurring in the spacer. We believe that the results of all experimental approaches applied to this locus so far can be fitted to a model in which the DHFR origin consists of a 55-kb intergenic zone of potential sites that are used with very different efficiencies and which are separated in many cases by a few kilobases or less.


Assuntos
Replicação do DNA , Origem de Replicação/genética , Tetra-Hidrofolato Desidrogenase/genética , Animais , Células CHO , Cricetinae , DNA/análise , DNA/biossíntese , DNA/genética , Replicação do DNA/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Mimosina/farmacologia , Mapeamento Físico do Cromossomo , Fase S/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...