Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927700

RESUMO

Cowpeas (Vigna unguiculata L. Walp) have been credible constituents of nutritious food and forage in human and animal diets since the Neolithic era. The modern technique of Diversity Array Technology (DArTseq) is both cost-effective and rapid in producing thousands of high-throughputs, genotyped, single nucleotide polymorphisms (SNPs) in wide-genomic analyses of genetic diversity. The aim of this study was to assess the heterogeneity in cowpea genotypes using DArTseq-derived SNPs. A total of 92 cowpea genotypes were selected, and their fourteen-day-old leaves were freeze-dried for five days. DNA was extracted using the CTAB protocol, genotyped using DArTseq, and analysed using DArTsoft14. A total of 33,920 DArTseq-derived SNPs were recalled for filtering analysis, with a final total of 16,960 SNPs. The analyses were computed using vcfR, poppr, and ape in R Studio v1.2.5001-3 software. The heatmap revealed that the TVU 9596 (SB26), Orelu (SB72), 90K-284-2 (SB55), RV 403 (SB17), and RV 498 (SB16) genotypes were heterogenous. The mean values for polymorphic information content, observed heterozygosity, expected heterozygosity, major allele frequency, and the inbreeding coefficient were 0.345, 0.386, 0.345, 0.729, and 0.113, respectively. Moreover, they validated the diversity of the evaluated cowpea genotypes, which could be used for potential breeding programmes and management of cowpea germplasm.


Assuntos
Genótipo , Polimorfismo de Nucleotídeo Único , Vigna , Vigna/genética , Heterogeneidade Genética , Técnicas de Genotipagem/métodos
2.
Plants (Basel) ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674538

RESUMO

Artemisia afra is a plant that grows in the northern, central, and coastal regions of South Africa, as well as in neighboring countries such as Eswatini and Lesotho. These phytochemicals can be used as active compounds in plant-based medicine. Therefore, it is important to determine how plant minerals and phytochemicals, particularly bioactive compounds, are affected by the geolocation in which they grow. This study aimed to evaluate the mineral and phytochemical properties of A. afra genotypes in the southern regions of Africa. Leaf samples of A. afra genotypes were collected from Lesotho, in Mohale's Hoek and Roma. In South Africa, leaf samples were collected in Wepener and Hobhouse, and 80 plants were randomly selected for phytochemical and mineral analyses. This study reveals that phosphorus, calcium, potassium, iron, and zinc loaded positively to the first principal component, while copper loaded positively to the second principal component with variabilities of 29.95% and 21.12%, respectively. Furthermore, both the Mohale's Hoek and Hobhouse genotypes exhibited relatively high levels of ascorbic acid, phenolic compounds, flavonoids, and tannins. It is worth noting that genotypes from Roma and Wepener showed higher levels of foliar magnesium. Thus, the Mohale's Hoek and Hobhouse genotypes could be recommended for their better phytochemical contents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...