Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(8): 87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106531

RESUMO

The solar tachocline is an internal region of the Sun possessing strong radial and latitudinal shears straddling the base of the convective envelope. Based on helioseismic inversions, the tachocline is known to be thin (less than 5% of the solar radius). Since the first theory of the solar tachocline in 1992, this thinness has not ceased to puzzle solar physicists. In this review, we lay out the grounds of our understanding of this fascinating region of the solar interior. We detail the various physical mechanisms at stake in the solar tachocline, and put a particular focus on the mechanisms that have been proposed to explain its thinness. We also examine the full range of MHD processes including waves and instabilities that are likely to occur in the tachocline, as well as their possible connection with active region patterns observed at the surface. We reflect on the most recent findings for each of them, and highlight the physical understanding that is still missing and that would allow the research community to understand, in a generic sense, how the solar tachocline and stellar tachocline are formed, are sustained, and evolve on secular timescales.

2.
Sci Rep ; 9(1): 2035, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765712

RESUMO

When will a new cycle's sunspots appear? We demonstrate a novel physical mechanism, namely, that a "solar tsunami" occurring in the Sun's interior shear-fluid layer can trigger new cycle's magnetic flux emergence at high latitudes, a few weeks after the cessation of old cycle's flux emergence near the equator. This tsunami is excited at the equator when magnetic dams, created by the oppositely-directed old cycle's toroidal field in North and South hemispheres, break due to mutual annihilation of toroidal flux there. The fluid supported by these dams rushes to the equator; the surplus of fluid cannot be contained there, so it reflects back towards high latitudes, causing a tsunami. This tsunami propagates poleward at a speed of ~300 m/s until it encounters the new cycle's spot-producing toroidal fields in mid-latitudes, where it perturbs the fields, triggering their surface-eruption in the form of new cycle spots. A new sunspot cycle is preceded for several years by other forms of high-latitude magnetic activity, such as coronal bright points and ephemeral regions, until the tsunami causes the birth of new cycle's spots. The next tsunami is due by 2020, portending the start of intense 'space weather' that can adversely impact the Earth.

3.
Sci Rep ; 7(1): 14750, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116182

RESUMO

Powerful 'space weather' events caused by solar activity pose serious risks to human health, safety, economic activity and national security. Spikes in deaths due to heart attacks, strokes and other diseases occurred during prolonged power outages. Currently it is hard to prepare for and mitigate the impact of space weather because it is impossible to forecast the solar eruptions that can cause these terrestrial events until they are seen on the Sun. However, as recently reported in Nature, eruptive events like coronal mass ejections and solar flares, are organized into quasi-periodic "seasons", which include enhanced bursts of eruptions for several months, followed by quiet periods. We explored the dynamics of sunspot-producing magnetic fields and discovered for the first time that bursty and quiet seasons, manifested in surface magnetic structures, can be caused by quasi-periodic energy-exchange among magnetic fields, Rossby waves and differential rotation of the solar interior shear-layer (called tachocline). Our results for the first time provide a quantitative physical mechanism for forecasting the strength and duration of bursty seasons several months in advance, which can greatly enhance our ability to warn humans about dangerous solar bursts and prevent damage to satellites and power stations from space weather events.

4.
Sol Phys ; 291: 339-355, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445420

RESUMO

The structure of the Sun's corona varies with the solar-cycle phase, from a near spherical symmetry at solar maximum to an axial dipole at solar minimum. It is widely accepted that the large-scale coronal structure is governed by magnetic fields that are most likely generated by dynamo action in the solar interior. In order to understand the variation in coronal structure, we couple a potential-field source-surface model with a cyclic dynamo model. In this coupled model, the magnetic field inside the convection zone is governed by the dynamo equation; these dynamo-generated fields are extended from the photosphere to the corona using a potential-field source-surface model. Assuming axisymmetry, we take linear combinations of associated Legendre polynomials that match the more complex coronal structures. Choosing images of the global corona from the Mauna Loa Solar Observatory at each Carrington rotation over half a cycle (1986 - 1991), we compute the coefficients of the associated Legendre polynomials up to degree eight and compare with observations. We show that at minimum the dipole term dominates, but it fades as the cycle progresses; higher-order multipolar terms begin to dominate. The amplitudes of these terms are not exactly the same for the two limbs, indicating that there is a longitude dependence. While both the 1986 and the 1996 minimum coronas were dipolar, the minimum in 2008 was unusual, since there was a substantial departure from a dipole. We investigate the physical cause of this departure by including a North-South asymmetry in the surface source of the magnetic fields in our flux-transport dynamo model, and find that this asymmetry could be one of the reasons for departure from the dipole in the 2008 minimum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...