Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 569, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830898

RESUMO

Large datasets of carbon dioxide, energy, and water fluxes were measured with the eddy-covariance (EC) technique, such as FLUXNET2015. These datasets are widely used to validate remote-sensing products and benchmark models. One of the major challenges in utilizing EC-flux data is determining the spatial extent to which measurements taken at individual EC towers reflect model-grid or remote sensing pixels. To minimize the potential biases caused by the footprint-to-target area mismatch, it is important to use flux datasets with awareness of the footprint. This study analyze the spatial representativeness of global EC measurements based on the open-source FLUXNET2015 data, using the published flux footprint model (SAFE-f). The calculated annual cumulative footprint climatology (ACFC) was overlaid on land cover and vegetation index maps to create a spatial representativeness dataset of global flux towers. The dataset includes the following components: (1) the ACFC contour (ACFCC) data and areas representing 50%, 60%, 70%, and 80% ACFCC of each site, (2) the proportion of each land cover type weighted by the 80% ACFC (ACFCW), (3) the semivariogram calculated using Normalized Difference Vegetation Index (NDVI) considering the 80% ACFCW, and (4) the sensor location bias (SLB) between the 80% ACFCW and designated areas (e.g. 80% ACFCC and window sizes) proxied by NDVI. Finally, we conducted a comprehensive evaluation of the representativeness of each site from three aspects: (1) the underlying surface cover, (2) the semivariogram, and (3) the SLB between 80% ACFCW and 80% ACFCC, and categorized them into 3 levels. The goal of creating this dataset is to provide data quality guidance for international researchers to effectively utilize the FLUXNET2015 dataset in the future.

2.
Front Plant Sci ; 13: 1074383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714699

RESUMO

Climate change has a devastating effect on wheat production; therefore, crop production might decline by 2030. Phosphorus (P) nutrient deficiency is another main limiting factor of reduced yield. Hence, there is a dire need to judiciously consider wheat yield, so that human requirements and nutrition balance can be sustained efficiently. Despite the great significance of biostimulants in sustainable agriculture, there is still a lack of integrated technology encompassing the successful competitiveness of inoculated phosphate-solubilizing bacteria (PSB) in agricultural systems in the context of climatic conditions/meteorological factors and soil nutritional status. Therefore, the present study reveals the modulation of an integrated P nutrient management approach to develop potential PSB consortia for recommended wheat varieties by considering the respective soil health and agro-climatic conditions. The designed consortia were found to maintain adequate viability for up to 9 months, verified through field emission scanning electron microscopy and viable count. Furthermore, a significant increase in grain yield (5%-8%) and seed P (4%) content was observed in consortia-inoculated wheat plants with 20% reduced Diammonium phosphate (DAP) application under net house conditions. Fluorescence in situ hybridization analysis of roots and amplification of the gcd gene of Ochrobactrum sp. SSR indicated the survival and rhizosphere competency of the inoculated PSB. Categorical principal component analysis (CAT-PCA) showed a positive correlation of inoculated field-grown wheat varieties in native soils to grain yield, soil P content, and precipitation for sites belonging to irrigated plains and seed P content, soil organic matter, and number of tillers for sites belonging to Northern dry mountains. However, the impact of inoculation at sites belonging to the Indus delta was found significantly correlated to soil potassium (K) content, electrical conductivity (EC), and temperature. Additionally, a significant increase in grain yield (15%) and seed P (14%) content was observed in inoculated wheat plants. Thus, the present study demonstrates for the first time the need to integrate soil biological health and agro-climatic conditions for consistent performance of augmented PSB and enhanced P nutrient uptake to curtail soil pollution caused by the extensive use of agrochemicals. This study provides innovative insights and identifies key questions for future research on PSB to promote its successful implementation in agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...