Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 179: 108169, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688811

RESUMO

Epidemiological studies identified air pollution as one of the prime causes for human morbidity and mortality, due to harmful effects mainly on the cardiovascular and respiratory systems. Damage to the lung leads to several severe diseases such as fibrosis, chronic obstructive pulmonary disease and cancer. Noxious environmental aerosols are comprised of a gas and particulate phase representing highly complex chemical mixtures composed of myriads of compounds. Although some critical pollutants, foremost particulate matter (PM), could be linked to adverse health effects, a comprehensive understanding of relevant biological mechanisms and detrimental aerosol constituents is still lacking. Here, we employed a systems toxicology approach focusing on wood combustion, an important source for air pollution, and demonstrate a key role of the gas phase, specifically carbonyls, in driving adverse effects. Transcriptional profiling and biochemical analysis of human lung cells exposed at the air-liquid-interface determined DNA damage and stress response, as well as perturbation of cellular metabolism, as major key events. Connectivity mapping revealed a high similarity of gene expression signatures induced by wood smoke and agents prompting DNA-protein crosslinks (DPCs). Indeed, various gaseous aldehydes were detected in wood smoke, which promote DPCs, initiate similar genomic responses and are responsible for DNA damage provoked by wood smoke. Hence, systems toxicology enables the discovery of critical constituents of complex mixtures i.e. aerosols and highlights the role of carbonyls on top of particulate matter as an important health hazard.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Gases , Humanos , Madeira , Aerossóis e Gotículas Respiratórios , Aldeídos , Material Particulado/toxicidade , Fumaça/efeitos adversos
2.
Foods ; 10(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34441483

RESUMO

Coffee silver skin is produced in large amounts as a by-product during the coffee roasting process. In this study, coffee silver skin of the species Coffea arabica L. and Coffea canephora Pierre ex A. Froehner as well as silver skin pellets produced in the coffee industry were characterized with respect to both nutritional value and potential heat-induced contaminants. Enzymatic-gravimetric/chromatographic determination of the dietary fiber content showed values ranging from 59 to 67 g/100 g with a comparably high portion of soluble fiber, whereas low molecular weight soluble fiber was not detected. Compositional and methylation analysis indicated the presence of cellulose and xylans in the insoluble dietary fiber fraction, whereas pectic polysaccharides dominate the soluble dietary fiber fraction. The protein content as determined by the Kjeldahl method was in the range of 18 to 22 g/100 g, and all essential amino acids were present in coffee silver skin; whereas fat contents were low, high ash contents were determined. Elemental analysis by inductively coupled plasma mass spectrometry (ICP-MS) showed the presence of macroelements in large amounts, whereas toxic mineral elements were only detected in trace amounts or being absent. Acrylamide was quantified with levels of 24-161 µg/kg. Although 5-hydroxymethylfurfural was detected, its concentration was below the limit of determination. Furfuryl alcohol was not detected.

3.
Chem Res Toxicol ; 34(3): 839-848, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33645215

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP-1) is actively involved in several DNA repair pathways, especially in the detection of DNA lesions and DNA damage signaling. However, the mechanisms of PARP-1 activation are not fully understood. PARP-1 contains three zinc finger structures, among which the first zinc finger has a remarkably low affinity toward zinc ions. Within the present study, we investigated the impact of the cellular zinc status on PARP-1 activity and on genomic stability in HeLa S3 cells. Significant impairment of H2O2-induced poly(ADP-ribosyl)ation and an increase in DNA strand breaks were detected in the case of zinc depletion by the zinc chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) which reduced the total and labile zinc concentrations. On the contrary, preincubation of cells with ZnCl2 led to an overload of total as well as labile zinc and resulted in an increased poly(ADP-ribosyl)ation response upon H2O2 treatment. Furthermore, the impact of the cellular zinc status on gene expression profiles was investigated via high-throughput RT-qPCR, analyzing 95 genes related to metal homeostasis, DNA damage and oxidative stress response, cell cycle regulation and proliferation. Genes encoding metallothioneins responded most sensitively on conditions of mild zinc depletion or moderate zinc overload. Zinc depletion induced by higher concentrations of TPEN led to a significant induction of genes encoding DNA repair factors and cell cycle arrest, indicating the induction of DNA damage and genomic instability. Zinc overload provoked an up-regulation of the oxidative stress response. Altogether, the results highlight the potential role of zinc signaling for PARP-1 activation and the maintenance of genomic stability.


Assuntos
Poli(ADP-Ribose) Polimerase-1/metabolismo , Zinco/metabolismo , Dano ao DNA , Reparo do DNA , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/genética , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...