Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 3(2): e00115, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25729582

RESUMO

Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication and repair. Tumor cells express high levels of PCNA, identifying it as a potentially ideal target for cancer therapy. Previously, we identified nine compounds termed PCNA inhibitors (PCNA-Is) that bind directly to PCNA, stabilize PCNA trimer structure, reduce chromatin-associated PCNA, and selectively inhibit tumor cell growth. Of these compounds, PCNA-I1 was most potent. The purpose of this study is to further establish targeting of PCNA by PCNA-I1 and to identify PCNA-I1 analogs with superior potencies. We found that PCNA-I1 does not affect the level of chromatin-associated PCNA harboring point mutations at the predicted binding site of PCNA-I1. Forty-six PCNA-I1 analogs with structures of 1-hydrazonomethyl-2-hydroxy (scaffold A), 2-hydrazonomethyl-1-hydroxy (scaffold B), 2-hydrazonomethyl-3-hydroxy (scaffold C), and 4-pyridyl hydrazine (scaffold D) were analyzed for their effects on cell growth in four tumor cell lines and PCNA trimer stabilization. Compounds in scaffold group A and group B showed the highest trimer stabilization and the most potent cell growth inhibitory activities with a significant potency advantage observed in the Z isomers of scaffold A. The absence of trimer stabilization and growth inhibitory effects in compounds of scaffold group D confirms the essentiality of the hydroxynaphthyl substructure. Compounds structure-activity relationship (SAR)-6 and SAR-24 were analyzed for their effects on and found to reduce chromatin-associated PCNA in tumor cells. This study led to the identification of SAR-24, a compound with superior potencies and potentially improved solubility, which will be used for future development of PCNA-targeting cancer therapies.

2.
Mol Pharmacol ; 87(2): 263-76, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25480843

RESUMO

Proliferating cell nuclear antigen (PCNA) is a highly conserved protein necessary for proper component loading during the DNA replication and repair process. Proteins make a connection within the interdomain connector loop of PCNA, and much of the regulation is a result of the inherent competition for this docking site. If this target region of PCNA is modified, the DNA replication and repair process in cancer cells is potentially altered. Exploitation of this cancer-associated region has implications for targeted breast cancer therapy. In the present communication, we characterize a novel peptide (caPeptide) that has been synthesized to mimic the sequence identified as critical to the cancer-associated isoform of PCNA. This peptide is delivered into cells using a nine-arginine linking mechanism, and the resulting peptide (R9-cc-caPeptide) exhibits cytotoxicity in a triple-negative breast cancer cell line, MDA-MB-436, while having less of an effect on the normal counterparts (MCF10A and primary breast epithelial cells). The novel peptide was then evaluated for cytotoxicity using various in vivo techniques, including ATP activity assays, flow cytometry, and clonogenetic assays. This cytotoxicity has been observed in other breast cancer cell lines (MCF7 and HCC1937) and other forms of cancer (pancreatic and lymphoma). R9-cc-caPeptide has also been shown to block the association of PCNA with chromatin. Alanine scanning of the peptide sequence, combined with preliminary in silico modeling, gives insight to the disruptive ability and the molecular mechanism of action of the therapeutic peptide in vivo.


Assuntos
Neoplasias da Mama/metabolismo , Citotoxinas/metabolismo , Mimetismo Molecular/fisiologia , Fragmentos de Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Neoplasias da Mama/genética , Citotoxinas/genética , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fragmentos de Peptídeos/genética , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coelhos , Distribuição Aleatória
3.
Mol Cancer Ther ; 13(12): 2817-26, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25253786

RESUMO

Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication and repair. Tumor cells express high levels of PCNA, identifying it as a potentially ideal target for cancer therapy. Previously, we identified nine compounds termed PCNA inhibitors (PCNA-Is) that bind directly to PCNA, stabilize PCNA trimer structure, reduce chromatin-associated PCNA, and selectively inhibit tumor cell growth. Of these compounds, PCNA-I1 is most potent. The purposes of this study were to further investigate the effects of targeting PCNA chromatin association on DNA damage and cytotoxicity and to evaluate the therapeutic potential of PCNA-I1 against tumors in mice. Given the important roles of tumor suppressor p53 in regulating sensitivity of tumor cells to chemotherapeutics, we performed studies in two human prostate cancer cell lines differing in p53 expression: LNCaP cells (wild-type p53) and PC-3 cells (p53-null). PCNA-I1 induced DNA damage and apoptosis in both LNCaP and PC-3 cells and enhanced DNA damage and apoptosis triggered by cisplatin. PCNA-I1 also induced autophagy in PC-3 cells. A short-term pretreatment with PCNA-I1 reduced colony formation by 50% in both cell lines. These data suggest that, unlike many other cytotoxic drugs, the effects of PCNA-I1 on tumor cells do not depend on expression of p53. Intravenous administrations of PCNA-I1 significantly retarded growth of LNCaP tumors of in nude mice without causing detectable effects on mouse body weight and hematology profiles. These data provide proof of concept that targeting PCNA chromatin association could be a novel and effective therapeutic approach for treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Cromatina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Carga Tumoral/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Pharmacol ; 81(6): 811-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22399488

RESUMO

Proliferating cell nuclear antigen (PCNA), a potential anticancer target, forms a homotrimer and is required for DNA replication and numerous other cellular processes. The purpose of this study was to identify novel small molecules that modulate PCNA activity to affect tumor cell proliferation. An in silico screen of a compound library against a crystal structure of PCNA and a subsequent structural similarity search of the ZINC chemical database were carried out to derive relevant docking partners. Nine compounds, termed PCNA inhibitors (PCNA-Is), were selected for further characterization. PCNA-I1 selectively bound to PCNA trimers with a dissociation constant (K(d)) of ~0.2 to 0.4 µM. PCNA-Is promoted the formation of SDS-refractory PCNA trimers. PCNA-I1 dose- and time-dependently reduced the chromatin-associated PCNA in cells. Consistent with its effects on PCNA trimer stabilization, PCNA-I1 inhibited the growth of tumor cells of various tissue types with an IC(50) of ~0.2 µM, whereas it affected the growth of nontransformed cells at significantly higher concentrations (IC(50), ~1.6 µM). Moreover, uptake of BrdU was dose-dependently reduced in cells treated with PCNA-I1. Mechanistically the PCNA-Is mimicked the effect of PCNA knockdown by siRNA, inducing cancer cell arrest at both the S and G(2)/M phases. Thus, we have identified a class of compounds that can directly bind to PCNA, stabilize PCNA trimers, reduce PCNA association with chromatin, and inhibit tumor cell growth by inducing a cell cycle arrest. They are valuable tools in studying PCNA function and may be useful for future PCNA-targeted cancer therapy.


Assuntos
Divisão Celular , Cromatina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Ciclo Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Antígeno Nuclear de Célula em Proliferação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...