Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 84(2): 025103, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464247

RESUMO

A novel, rapid and accurate calibration procedure as a means for quantitative gas desorption measurement by temperature programmed desorption (TPD) spectroscopy is presented. Quantitative measurement beyond the linear regime of the instrument is achieved by associating an instantaneous calibrated molar flow rate of gas to the detector response. This technique is based on fundamental methods, and is independently verified by comparison to the hydrogen desorption capacity of a known standard metal hydride with known stoichiometry. The TPD calibration procedure described here may be used for any pure gas, and the accuracy is demonstrated for the specific case of hydrogen.

2.
Chem Rev ; 110(11): 6856-72, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20839769
3.
Appl Opt ; 47(22): 3999-4003, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18670553

RESUMO

The performance of a 10 mm diameter pyroelectric detector coated with a single-wall carbon nanotube (SWCNT) was evaluated in the 0.8 to 20 microm wavelength range. The relative spectral responsivity of this detector exhibits significant fluctuations over the wavelength range examined. This is consistent with independent absorbance measurements, which show that SWCNTs exhibit selective absorption bands in the visible and near-infrared. The performance of the detector in terms of noise equivalent power and detectivity in wavelength regions of high coating absorptivity was comparable with gold-black-coated pyroelectric detectors based on 50 microm thick LiTaO(3) crystals. The response of this detector was shown to be nonlinear for DC equivalent photocurrents >10(-9) A, and its spatial uniformity of response was comparable with other pyroelectric detectors utilizing gold-black coatings. The nonuniform spectral responsivity exhibited by the SWCNT-coated detector is expected to severely restrict the use of SWCNTs as black coatings for thermal detectors. However, the deposition of SWCNT coatings on a pyroelectric crystal followed by the study of the prominence of the spectral features in the relative spectral responsivity of the resultant pyroelectric detectors is shown to provide an effective method for quantifying the impurity content in SWCNT samples.


Assuntos
Nanotubos de Carbono/química , Nanotubos de Carbono/efeitos da radiação , Fotometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos , Fotometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdutores
4.
Appl Opt ; 45(6): 1093-7, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-16523768

RESUMO

The performance of a pyroelectric detector with a carbon multiwalled nanotube coating was evaluated in the 0.9-14 microm wavelength range. The relative spectral responsivity of this detector was shown to be flat over most of the wavelength range examined, and the spectral flatness was shown to be comparable to the best infrared black coatings currently available. This finding is promising because black coatings with spectrally flat absorbance profiles are usually associated with the highest absorbance values. The performance of the detector (in terms of noise equivalent power and specific detectivity) was limited by the very thick (250 microm thick) LiNbO3 pyroelectric crystal onto which the coating was deposited. The responsivity of this detector was shown to be linear in the 0.06-2.8 mW radiant power range, and its spatial uniformity was comparable to that of other pyroelectric detectors that use different types of black coating. The carbon nanotube coatings were reported to be much more durable than other infrared black coatings, such as metal blacks, that are commonly used to coat thermal detectors in the infrared. This, in combination with their excellent spectral flatness, suggests that carbon nanotube coatings appear extremely promising for thermal detection applications in the infrared.

5.
Phys Rev Lett ; 94(15): 155504, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15904160

RESUMO

Transition metal (TM) atoms bound to fullerenes are proposed as adsorbents for high density, room temperature, ambient pressure storage of hydrogen. C60 or C48B12 disperses TMs by charge transfer interactions to produce stable organometallic buckyballs (OBBs). A particular scandium OBB can bind as many as 11 hydrogen atoms per TM, ten of which are in the form of dihydrogen that can be adsorbed and desorbed reversibly. In this case, the calculated binding energy is about 0.3 eV/H(2), which is ideal for use on board vehicles. The theoretical maximum retrievable H2 storage density is approximately 9 wt %.

6.
J Nanosci Nanotechnol ; 4(7): 691-703, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15570946

RESUMO

Carbon single-wall nanotubes (SWNTs) have highly unique electronic, mechanical and adsorption properties, making them interesting for a variety of applications. Raman spectroscopy has been demonstrated to be one of the most important methods for characterizing SWNTs. For example, Raman spectroscopy may be employed to differentiate between metallic and semi-conducting nanotubes, and may also be employed to determine SWNT diameters and even the nanotube chirality. Single-wall carbon nanotubes are generated in a variety of ways, including arc-discharge, laser vaporization and various chemical vapor deposition (CVD) techniques. In all of these methods, a metal catalyst must be employed to observe SWNT formation. Also, all of the current synthesis techniques generate various non-nanotube carbon impurities, including amorphous carbon, fullerenes, multi-wall nanotubes (MWNTs) and nano-crystalline graphite, as well as larger micro-sized particles of graphite. For any of the potential nanotube applications to be realized, it is, therefore, necessary that purification techniques resulting in the recovery of predominantly SWNTs at high-yields be developed. It is, of course, equally important that a method for determining nanotube wt.% purity levels be developed and standardized. Moreover, a rapid method for qualitatively measuring nanotube purity could facilitate many laboratory research efforts. This review article discusses the application of Raman spectroscopy to rapidly determine if large quantities of carbon impurities are present in nanotube materials. Raman spectra of crude SWNT materials reveal tangential bands between 1500-1600 cm(-1), as well as a broad band at approximately 1350 cm(-1), attributed to a convolution of the disorder-induced band (D-band) of carbon impurities and the D-band of the SWNTs themselves. Since the full-width-at-half-maximum (FWHM) intensity of the various carbon impurity D-bands is generally much broader than that of the nanotube D-band, an indication of the SWNT purity level may be obtained by simply examining the line-width of the D-band. We also briefly discuss the effect of nanotube bundling on SWNT Raman spectra. Finally, sections on employing Raman spectroscopy, and Raman spectroscopy coupled with additional techniques, to identify the separation and possible isolation of a specific nanotube within purified SWNT materials is provided. Every SWNT can be considered to be a unique molecule, with different physical properties, depending on its (n, m) indices. The production of phase-pure (n, m) SWNTs may be essential for some nanotube applications.


Assuntos
Carbono/química , Nanotubos de Carbono/química , Análise Espectral Raman/métodos , Cristalografia , Elétrons , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanotecnologia/métodos , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...