Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629177

RESUMO

Bumble bees are common in cooler climates and many species likely experience periodic exposure to very cold temperatures, but little is known about the temporal dynamics of cold response mechanisms following chill exposure, especially how persistent effects of cold exposure may facilitate tolerance of future events. To investigate molecular processes involved in the temporal response by bumble bees to acute cold exposure, we compared mRNA transcript abundance in Bombus impatiens workers exposed to 0°C for 75 min (inducing chill coma) and control bees maintained at a constant ambient temperature (28°C). We sequenced the 3' end of mRNA transcripts (TagSeq) to quantify gene expression in thoracic tissue of bees at several time points (0, 10, 30, 120 and 720 min) following cold exposure. Significant differences from control bees were only detectable within 30 min after the treatment, with most occurring at the 10 min recovery time point. Genes associated with gluconeogenesis and glycolysis were most notably upregulated, while genes related to lipid and purine metabolism were downregulated. The observed patterns of expression indicate a rapid recovery after chill coma, suggesting an acute differential transcriptional response during recovery from chill coma and return to baseline expression levels within an hour, with no long-term gene expression markers of this cold exposure. Our work highlights the functions and pathways important for acute cold recovery, provides an estimated time frame for recovery from cold exposure in bumble bees, and suggests that cold hardening may be less important for these heterothermic insects.


Assuntos
Temperatura Baixa , Animais , Abelhas/genética , Abelhas/fisiologia , Regulação da Expressão Gênica , Transcriptoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
2.
Front Physiol ; 14: 1251235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028807

RESUMO

Global declines in abundance and diversity of insects are now well-documented and increasingly concerning given the critical and diverse roles insects play in all ecosystems. Habitat loss, invasive species, and anthropogenic chemicals are all clearly detrimental to insect populations, but mounting evidence implicates climate change as a key driver of insect declines globally. Warming temperatures combined with increased variability may expose organisms to extreme heat that exceeds tolerance, potentially driving local extirpations. In this context, heat tolerance limits (e.g., critical thermal maximum, CTmax) have been measured for many invertebrates and are often closely linked to climate regions where animals are found. However, temperatures well below CTmax may also have pronounced effects on insects, but have been relatively less studied. Additionally, many insects with out-sized ecological and economic footprints are colonial (e.g., ants, social bees, termites) such that effects of heat on individuals may propagate through or be compensated by the colony. For colonial organisms, measuring direct effects on individuals may therefore reveal little about population-level impacts of changing climates. Here, we use bumble bees (genus Bombus) as a case study to highlight how a limited understanding of heat effects below CTmax and of colonial impacts and responses both likely hinder our ability to explain past and predict future climate change impacts. Insights from bumble bees suggest that, for diverse invertebrates, predicting climate change impacts will require a more nuanced understanding of the effects of heat exposure and additional studies of carry-over effects and compensatory responses by colonies.

3.
J Insect Physiol ; 151: 104581, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871769

RESUMO

Cold tolerance of ectotherms can vary strikingly among species and populations. Variation in cold tolerance can reflect differences in genomes and transcriptomes that confer cellular-level protection from cold; additionally, shifts in protein function and abundance can be altered by other cellular constituents as cold-exposed insects often have shifts in their metabolomes. Even without a cold challenge, insects from different populations may vary in cellular composition that could alter cold tolerance, but investigations of constitutive differences in metabolomes across wild populations remain rare. To address this gap, we reared Bombus vosnesenskii queens collected from Oregon and California (USA) that differ in cold tolerance (CTmin = -6 °C and 0 °C, respectively) in common garden conditions, and measured offspring metabolomes using untargeted LC-MS/MS. Oregon bees had higher levels of metabolites associated with carbohydrate (sorbitol, lactitol, maltitol, and sorbitol-6-phosphate) and amino acid (hydroxyproline, ornithine, and histamine) metabolism. Exogenous metabolites, likely derived from the diet, also varied between Oregon and California bees, suggesting population-level differences in toxin metabolism. Overall, our results reveal constitutive differences in metabolomes for bumble bees reared in common garden conditions from queens collected in different locations despite no previous cold exposure.


Assuntos
Dieta , Espectrometria de Massas em Tandem , Abelhas , Animais , Cromatografia Líquida , Metaboloma
4.
J Insect Sci ; 23(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804501

RESUMO

Bombus vosnesenskii Radowszkowski, 1862 is one of three bumble bee species commercially available for pollination services in North America; however, little is documented about B. vosnesenskii colony life cycle or the establishment of ex situ rearing, mating, and overwintering practices. In this study, we documented nest success, colony size, and gyne production; recorded the duration of mating events; assessed overwintering survival of mated gynes; and evaluated second-generation nest success for colonies established from low- and high-elevation wild-caught B. vosnesenskii gynes. Of the 125 gynes installed, 62.4% produced brood cells (nest initiation) and 43.2% had at least 1 worker eclose (nest establishment). High-elevation B. vosnesenskii gynes had significantly higher nest initiation and establishment success than low-elevation gynes. However, low-elevation colonies were significantly larger with queens producing more gynes on average. Mating was recorded for 200 low-elevation and 37 high-elevation gynes, resulting in a mean duration of 62 and 51 min, respectively. Mated gynes were then placed into cold storage for 54 days to simulate overwintering, which resulted in 59.1% of low-elevation gynes surviving and 91.9% of high-elevation gynes surviving. For second-generation low-elevation gynes, 26.4% initiated nesting and 14.3% established nesting. Second-generation high-elevation gynes did not initiate nesting despite CO2 narcosis treatments. Overall, these results increase our understanding of B. vosnesenskii nesting, mating, and overwintering biology from 2 elevations. Furthermore, this study provides information on successful husbandry practices that can be used by researchers and conservationists to address knowledge gaps and enhance the captive rearing of bumble bees.


Assuntos
Himenópteros , Abelhas , Animais , Polinização
5.
PLoS One ; 18(8): e0290065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37590251

RESUMO

Organizational climate is a key determinant of diverse aspects of success in work settings, including in academia. Power dynamics in higher education can result in inequitable experiences of workplace climate, potentially harming the well-being and productivity of employees. Quantifying experiences of climate across employment categories can help identify changes necessary to create a more equitable workplace for all. We developed and administered a climate survey within our academic workplace-the Department of Zoology and Physiology at the University of Wyoming-to evaluate experiences of climate across three employment categories: faculty, graduate students, and staff. Our survey included a combination of closed-response (e.g., Likert-scale) and open-ended questions. Most department members (82%) completed the survey, which was administered in fall 2021. Faculty generally reported more positive experiences than staff. Graduate students often fell between these two groups, though in some survey sections (e.g., mental health and well-being) students reported the most negative experiences of departmental climate. Three common themes emerged from the analysis of open-ended responses: equity, community, and accountability. We discuss how these themes correspond to concrete action items for improving our departmental climate, some of which have been implemented already, while others constitute future initiatives and/or require a collective push towards systemic change in academia. Finally, service work of this type often falls outside of job descriptions, requiring individuals to either work more or trade-off productivity in other areas that are formally evaluated. With the goal of minimizing this burden for others, we detail our process and provide the materials and framework necessary to streamline this process for other departments aiming to evaluate workplace climate as a key first step in building a positive work environment for all employees.


Assuntos
Responsabilidade Social , Local de Trabalho , Humanos , Clima , Impulso (Psicologia) , Docentes
6.
J Insect Physiol ; 146: 104491, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773841

RESUMO

Bumble bee (genus Bombus) populations are increasingly under threat from habitat fragmentation, pesticides, pathogens, and climate change. Climate change is likely a prime driver of bumble bee declines but the mechanisms by which changing climates alter local abundance, leading to shifts in geographic range are unclear. Heat tolerance is quite high in worker bumble bees (CTmax âˆ¼ 48-55 °C), making it unlikely for them to experience these high temperatures, even with climate warming. However, the thermal tolerance of whole organisms often exceeds that of their gametes; many insects can be sterilized by exposure to temperatures well below their upper thermal tolerance. Male bumble bees are independent from the colony and may encounter more frequent temperature extremes, but whether these exposures compromise spermatozoa is still unclear. Using commercially-reared Bombus impatiens colonies, males were reared in the lab and spermatozoa were exposed (in vivo and isolated in vitro) to sublethal temperatures near lower and upper thermal tolerance (CTmin and CTmax, respectively). Heat exposure (45 °C for up to 85 min) reduced spermatozoa viability both for whole males (in vivo; control = 79.5 %, heat exposed = 58 %, heat stupor = 57.7 %) and isolated seminal vesicles (in vitro; control = 85.5 %, heat exposed = 62.9 %). Whole males exposed to 4 °C for 85 min (in vivo; control = 79.2 %, cold = 72.4 %), isolated seminal vesicles exposed to 4 °C for 85 min (in vitro; control = 85.5 %, cold = 85.1 %), and whole males exposed to for 4 °C for 48 h (in vivo; control = 88.7 %, cold = 84.3 %) did not differ significantly in spermatozoa viability. After<85 min at 45 °C, males had significantly reduced spermatozoa viability, suggesting that short-term heat waves below CTmax could strongly reduce the fertility of male bumble bees with potential population-level impacts.


Assuntos
Temperatura Alta , Sêmen , Abelhas , Masculino , Animais , Temperatura , Fertilidade , Espermatozoides
7.
Insects ; 13(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36292818

RESUMO

For insects, the timing of many life history events (phenology) depends on temperature cues. Body size is a critical mediator of insect responses to temperature, so may also influence phenology. The determinants of spring emergence of bumble bee queens are not well understood, but body size is likely important for several reasons. In fall, queens accumulate energy stores to fuel overwinter survival. Accumulation of fat stores prior to and depletion of fat stores during overwintering are likely size-dependent: larger queens can accumulate more lipids and have lower mass-specific metabolic rates. Therefore, larger queens and queens in relatively better condition may have delayed depletion of energy stores, allowing for later spring emergence. To test whether timing of spring emergence is associated with body size and condition, we captured 295 Bombus huntii queens in Laramie, WY, during the 2020 and 2021 growing seasons, weighed them, and measured intertegular width (a size metric unaffected by variation in feeding and hydration state). Early emerging queens were smaller than later emerging queens across years. Mass relative to intertegular width increased as the season progressed suggesting, as predicted, that body condition influences the timing of spring emergence for these crucial pollinators.

8.
Ecology ; 103(6): e3677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262926

RESUMO

Homeothermy requires increased metabolic rates as temperatures decline below the thermoneutral zone, so homeotherms typically select microhabitats within or near their thermoneutral zones during periods of inactivity. However, many mammals and birds are heterotherms that relax internal controls on body temperature and go into torpor when maintaining a high, stable body temperature, which is energetically costly. Such heterotherms should be less tied to microhabitats near their thermoneutral zones and, because heterotherms spend more time in torpor and expend less energy at colder temperatures, heterotherms may even select microhabitats in which temperatures are well below their thermoneutral zones. We studied how temperature and daily torpor influence the selection of microhabitats (i.e., diurnal roosts) by a heterothermic bat (Myotis thysanodes). We (1) quantified the relationship between ambient temperature and daily duration of torpor, (2) simulated daily energy expenditure over a range of microhabitat temperatures, and (3) quantified the influence of microhabitat temperature on microhabitat selection. In addition, warm microhabitats substantially reduced the energy expenditure of simulated homeothermic bats, and heterothermic bats modulated their use of daily torpor to maintain a constant level of energy expenditure across microhabitats of different temperatures. Daily torpor expanded the range of energetically economical microhabitats, such that microhabitat selection was independent of microhabitat temperature. Our work adds to a growing literature documenting the functions of torpor beyond its historical conceptualization as a last-resort measure to save energy during periods of extended or acute energetic stress.


Assuntos
Quirópteros , Torpor , Animais , Temperatura Corporal , Regulação da Temperatura Corporal , Metabolismo Energético , Mamíferos
9.
J Therm Biol ; 104: 103196, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35180973

RESUMO

Bumble bees thrive in cold climates including high latitude and high altitude regions around the world, yet cold tolerance strategies are largely unknown for most species. To determine bumble bee cold tolerance strategy, we exposed bumble bees to a range of low temperatures and measured survival 72 h post-exposure. All bees that froze died within 72 h while only one bee died without freezing, suggesting that bumble bees are generally freeze-avoiding insects and may be slightly chill susceptible. We then assessed whether temperatures that cause internal ice formation (supercooling points, SCP) varied among bumble bee castes (drones, workers, and queens), or across queen life stages, collection elevation, species, or season. Males froze at significantly lower temperatures than workers or queens. Queens in pre-overwintering or overwintering states froze at significantly lower temperatures than queens stimulated to initiate ovary development by CO2 narcosis (i.e., "spring" queens). We also tested whether the presence of water (i.e., wet or dry) or ramping rate affected SCP. As expected, queens inoculated with water froze at significantly higher temperatures than dry queens. SCP tended to be lower, but not significantly so, at faster ramping rates (0.5 °C/min vs 0.25 °C/min). We also found no differences in SCP between queen bumble bees collected in spring and fall, between queens collected at two sites differing in elevation by 1100 m, or between three field-caught bumble bee species. Bumble bees appear to have relatively high, invariable SCPs, likely making them highly susceptible to freezing across all seasons. As bumble bees are not freeze-tolerant and appear to lack the ability to prevent freezing at temperatures much below 0 °C, they may rely on season- and caste-specific micro-habitat selection to thrive in cold climates.


Assuntos
Abelhas , Animais , Feminino , Masculino , Abelhas/crescimento & desenvolvimento , Abelhas/fisiologia , Ecossistema , Congelamento , Estações do Ano , Temperatura
10.
J Insect Physiol ; 134: 104297, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34403656

RESUMO

Bumble bees are eusocial, with distinct worker and queen castes that vary strikingly in size and life-history. The smaller workers rely on energetically-demanding foraging flights to collect resources for rearing brood. Queens can be 3 to 4 times larger than workers, flying only for short periods in fall and again in spring after overwintering underground. These differences between castes in size and life history may be reflected in hypoxia tolerance. When oxygen demand exceeds supply, oxygen delivery to the tissues can be compromised. Previous work revealed hypermetric scaling of tracheal system volume of worker bumble bees (Bombus impatiens); larger workers had much larger tracheal volumes, likely to facilitate oxygen delivery over longer distances. Despite their much larger size, queens had relatively small tracheal volumes, potentially limiting their ability to deliver oxygen and reducing their ability to respond to hypoxia. However, these morphological measurements only indirectly point to differences in respiratory capacity. To directly assess size- and caste-related differences in tolerance to low oxygen, we measured critical PO2 (Pcrit; the ambient oxygen level below which metabolism cannot be maintained) during both rest and flight of worker and queen bumble bees. Queens and workers had similar Pcrit values during both rest and flight. However, during flight in oxygen levels near the Pcrit, mass-specific metabolic rates declined precipitously with mass both across and within castes, suggesting strong size limitations on oxygen delivery, but only during extreme conditions, when demand is high and supply is low. Together, these data suggest that the comparatively small tracheal systems of queen bumble bees do not limit their ability to deliver oxygen except in extreme conditions; they pay little cost for filling body space with eggs rather than tracheal structures.


Assuntos
Abelhas , Voo Animal/fisiologia , Oxigênio/metabolismo , Animais , Abelhas/metabolismo , Abelhas/fisiologia , Hipóxia , Respiração , Fenômenos Fisiológicos Respiratórios
11.
Trends Ecol Evol ; 36(10): 889-898, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34147289

RESUMO

Historic approaches to understanding biological responses to climate change have viewed climate as something external that happens to organisms. Organisms, however, at least partially influence their own climate experience by moving within local mosaics of microclimates. Such behaviors are increasingly being incorporated into models of species distributions and climate sensitivity. Less attention has focused on how organisms alter microclimates via extended phenotypes: phenotypes that extend beyond the organismal surface, including structures that are induced or built. We argue that predicting the consequences of climate change for organismal performance and fitness will depend on understanding the expression and consequences of extended phenotypes, the microclimatic niches they generate, and the power of plasticity and evolution to shape those niches.


Assuntos
Mudança Climática , Microclima , Ecossistema , Fenótipo
12.
J Comp Physiol B ; 191(5): 843-854, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34173046

RESUMO

The time required to recover from cold exposure (chill coma recovery time) may represent an important metric of performance and has been linked to geographic distributions of diverse species. Chill coma recovery time (CCRT) has rarely been measured in bumble bees (genus Bombus) but may provide insights regarding recent changes in their distributions. We measured CCRT of Bombus vosnesenskii workers reared in common garden laboratory conditions from queens collected across altitude and latitude in the Western United States. We also compared CCRTs of male and female bumble bees because males are often overlooked in studies of bumble bee ecology and physiology and may differ in their ability to respond to cold temperatures. We found no relationship between CCRT and local climate at the queen collection sites, but CCRT varied significantly with sex and body mass. Because differences in the ability to recover from cold temperatures have been shown in wild-caught Bombus, we predict that variability in CCRT may be strongly influenced by plasticity.


Assuntos
Clima , Coma , Altitude , Animais , Abelhas , Temperatura Baixa , Feminino , Masculino
13.
Sci Rep ; 10(1): 17063, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051510

RESUMO

Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-reared Bombus vosnesenskii workers. We analyze bees reared from latitudinal (35.7-45.7°N) and altitudinal (7-2154 m) extremes of the species' range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.


Assuntos
Abelhas/genética , Abelhas/fisiologia , Aclimatação/genética , Aclimatação/fisiologia , Animais , California , Mudança Climática , Feminino , Expressão Gênica , Ontologia Genética , Genes de Insetos , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Oregon , Filogeografia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Temperatura
14.
Glob Chang Biol ; 26(10): 5524-5538, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32698241

RESUMO

Rapid glacier recession is altering the physical conditions of headwater streams. Stream temperatures are predicted to rise and become increasingly variable, putting entire meltwater-associated biological communities at risk of extinction. Thus, there is a pressing need to understand how thermal stress affects mountain stream insects, particularly where glaciers are likely to vanish on contemporary timescales. In this study, we measured the critical thermal maximum (CTMAX ) of stonefly nymphs representing multiple species and a range of thermal regimes in the high Rocky Mountains, USA. We then collected RNA-sequencing data to assess how organismal thermal stress translated to the cellular level. Our focal species included the meltwater stonefly, Lednia tumana, which was recently listed under the U.S. Endangered Species Act due to climate-induced habitat loss. For all study species, critical thermal maxima (CTMAX  > 20°C) far exceeded the stream temperatures mountain stoneflies experience (<10°C). Moreover, while evidence for a cellular stress response was present, we also observed constitutive expression of genes encoding proteins known to underlie thermal stress (i.e., heat shock proteins) even at low temperatures that reflected natural conditions. We show that high-elevation aquatic insects may not be physiologically threatened by short-term exposure to warm temperatures and that longer-term physiological responses or biotic factors (e.g., competition) may better explain their extreme distributions.


Assuntos
Insetos , Rios , Animais , Clima , Expressão Gênica , Camada de Gelo
15.
Curr Opin Insect Sci ; 41: 1-6, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32553896

RESUMO

Climate change is proceeding rapidly in high mountain regions worldwide. Rising temperatures will impact insect physiology and associated fitness and will shift populations in space and time, thereby altering community interactions and composition. Shifts in space are expected as insects move upslope to escape warming temperatures and shifts in time will occur with changes in phenology of resident high-elevation insects. Clearly, spatiotemporal shifts will not affect all species equally. Terrestrial insects may have more opportunities than aquatic insects to exploit microhabitats, potentially buffering them from warming. Such responses of insects to warming may also fuel evolutionary change, including hitchhiking of maladaptive alleles and genetic rescue. Together, these considerations suggest a striking restructuring of high-elevation insect communities that remains largely unstudied.


Assuntos
Altitude , Mudança Climática , Insetos/fisiologia , Distribuição Animal/fisiologia , Animais , Evolução Biológica , Ecossistema , Insetos/genética , Temperatura
16.
Mol Ecol ; 29(5): 920-939, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32031739

RESUMO

Understanding evolutionary responses to variation in temperature and precipitation across species ranges is of fundamental interest given ongoing climate change. The importance of temperature and precipitation for multiple aspects of bumble bee (Bombus) biology, combined with large geographic ranges that expose populations to diverse environmental pressures, make these insects well-suited for studying local adaptation. Here, we analyzed genome-wide sequence data from two widespread bumble bees, Bombus vosnesenskii and Bombus vancouverensis, using multiple environmental association analysis methods to investigate climate adaptation across latitude and altitude. The strongest signatures of selection were observed in B. vancouverensis, but despite unique responses between species for most loci, we detected several shared responses. Genes relating to neural and neuromuscular function and ion transport were especially evident with respect to temperature variables, while genes relating to cuticle formation, tracheal and respiratory system development, and homeostasis were associated with precipitation variables. Our data thus suggest that adaptive responses for tolerating abiotic variation are likely to be complex, but that several parallels among species can emerge even for these complex traits and landscapes. Results provide the framework for future work into mechanisms of thermal and desiccation tolerance in bumble bees and a set of genomic targets that might be monitored for future conservation efforts.


Assuntos
Aclimatação , Abelhas/genética , Clima , Altitude , Animais , Abelhas/classificação , California , Genética Populacional , Genoma de Inseto , Oregon , Polimorfismo de Nucleotídeo Único , Washington
17.
Sci Adv ; 6(6): eaay3115, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076646

RESUMO

Foraging bees fly with heavy loads of nectar and pollen, incurring energetic costs that are typically assumed to depend on load size. Insects can produce more force by increasing stroke amplitude and/or flapping frequency, but the kinematic response of a given species is thought to be consistent. We examined bumblebees (Bombus impatiens) carrying both light and heavy loads and found that stroke amplitude increased in proportion to load size, but did not predict metabolic rate. Rather, metabolic rate was strongly tied to frequency, which was determined not by load size but by the bee's average loading state and loading history, with heavily loaded bees displaying smaller changes in frequency and smaller increases in metabolic rate to support additional loading. This implies that bees can increase force production through alternative mechanisms; yet, they often choose the energetically costly option of elevating frequency, suggesting associated performance benefits that merit further investigation.


Assuntos
Abelhas , Comportamento Animal , Animais , Modelos Teóricos , Néctar de Plantas , Pólen
18.
Curr Opin Insect Sci ; 36: 131-139, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698151

RESUMO

Advances in tools to gather environmental, phenotypic, and molecular data have accelerated our ability to detect abiotic drivers of variation across the genome-to-phenome spectrum in model and non-model insects. However, differences in the spatial and temporal resolution of these data sets may create gaps in our understanding of linkages between environment, genotype, and phenotype that yield missed or misleading results about adaptive variation. In this review we highlight sources of variability that might impact studies of phenotypic and 'omic environmental adaptation, challenges to collecting data at relevant scales, and possible solutions that link intensive fine-scale reductionist studies of mechanisms to large-scale biogeographic patterns.


Assuntos
Ecossistema , Insetos/genética , Insetos/fisiologia , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Genômica , Fenótipo
19.
Mol Ecol ; 27(14): 2926-2942, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29862596

RESUMO

Identifying drivers of dispersal limitation and genetic differentiation is a key goal in biogeography. We examine patterns of population connectivity and genetic diversity using restriction site-associated DNA sequencing (RADseq) in two bumble bee species, Bombus vosnesenskii and Bombus bifarius, across latitude and altitude in mountain ranges from California, Oregon and Washington, U.S.A. Bombus vosnesenskii, which occurs across a broader elevational range at most latitudes, exhibits little population structure while B. bifarius, which occupies a relatively narrow higher elevation niche across most latitudes, exhibits much stronger population differentiation, although gene flow in both species is best explained by isolation with environmental niche resistance. A relationship between elevational habitat breadth and genetic diversity is also apparent, with B. vosnesenskii exhibiting relatively consistent levels of genetic diversity across its range, while B. bifarius has reduced genetic diversity at low latitudes, where it is restricted to high-elevation habitat. The results of this study highlight the importance of the intersect between elevational range and habitat suitability in influencing population connectivity and suggest that future climate warming will have a fragmenting effect even on populations that are presently well connected, as they track their thermal niches upward in montane systems.


Assuntos
Abelhas/genética , Variação Genética , Repetições de Microssatélites/genética , Polinização/genética , Altitude , Animais , Abelhas/crescimento & desenvolvimento , California , Ecossistema , Fluxo Gênico/genética , Genótipo , Oregon , Análise de Sequência de DNA , Washington
20.
J Exp Biol ; 221(Pt 8)2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29530975

RESUMO

Critical thermal limits often determine species distributions for diverse ectotherms and have become a useful tool for understanding past and predicting future range shifts in response to changing climates. Despite recently documented population declines and range shifts of bumblebees (genus Bombus), the few measurements of thermal tolerance available for the group have relied on disparate measurement approaches. We describe a novel stereotypical behavior expressed by bumblebee individuals during entry into chill coma. This behavioral indicator of minimum critical temperature (CTmin) occurred at ambient temperatures of 3-5°C (approximately 7-9°C core temperatures) and was accompanied by a pronounced CO2 pulse, indicative of loss of spiracle function. Maximum critical temperature (CTmax) was indicated by the onset of muscular spasms prior to entering an unresponsive state and occurred at ambient temperatures of approximately 52-55°C (42-44°C core temperatures). Measurements of CTmin and CTmax were largely unaffected by acclimation, age or feeding status, but faster ramping rates significantly increased CTmax and decreased CTmin This high-throughput approach allows rapid measurement of critical thermal limits for large numbers of individuals, facilitating large-scale comparisons among bumblebee populations and species - a key step in determining current and future effects of climate on these critical pollinators.


Assuntos
Abelhas/fisiologia , Temperatura Baixa , Temperatura Alta , Aclimatação/fisiologia , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dióxido de Carbono/metabolismo , Feminino , Espasmo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...