Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Dent ; 18(1): 243-252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37172943

RESUMO

OBJECTIVES: To investigate the effects of radiofrequency (RF) energy, applied through a power toothbrush, on the structural morphology of dental plaque and its bacteria components. Previous studies showed that a toothbrush powered by RF (ToothWave) effectively reduces extrinsic tooth stains, plaque, and calculus. However, the mechanism by which it reduces dental plaque deposits is not fully established. MATERIALS AND METHODS: Multispecies plaques at sampling time points of 24, 48, and 72 hours were treated with the application of RF using ToothWave with the toothbrush bristles 1 mm above the plaque surface. Groups that underwent the same protocol but without RF treatment served as paired controls. Confocal laser scanning microscope (CLSM) was used to determine cell viability at each time point. Plaque morphology and bacteria ultrastructure were viewed using scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. STATISTICAL ANALYSIS: Data were analyzed statistically using analysis of variance (ANOVA) and Bonferroni post-tests. RESULTS: At each time, RF treatment significantly (p < 0.05) reduced the viable cells in plaque and caused a substantial disruption of plaque morphology, while the untreated plaque had intact morphology. Cells in treated plaques showed disrupted cell walls, cytoplasmic material, huge vacuoles, and heterogeneity in electron density, while these organelles remained intact in untreated plaques. CONCLUSION: The application of RF via a power toothbrush can disrupt plaque morphology and kill bacteria. These effects were enhanced by the combined application of RF and toothpaste.

2.
Microorganisms ; 11(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36985202

RESUMO

This study validated a microbial caries model (artificial mouth) for dental caries development to determine the optimal time to create early caries suitable for evaluation of the efficacy of caries therapeutic agents. In all, 40 human enamel blocks were placed in an artificial mouth at 37 °C and 5% CO2 and were exposed to brain heart infusion broth inoculated with S. mutans in continuous circulation (0.3 mL/min). The culture medium was replaced three times daily. Samples were exposed to 10% sucrose for 3 min, 3 times daily to promote biofilm growth. Five samples were harvested from the chamber after 3, 4, 5, 6, 7, 14, 21, and 28 days. At the end of experiment, samples were assessed visually by ICDAS criteria, while lesion depth (LD) and mineral loss (ML) were measured using polarizing light microscopy and transverse microradiography. Data were analyzed by Pearson correlation, ANOVA, and Tukey comparison test (p < 0.05). Results showed significant and strong positive correlation (p < 0.01) between all variables and biofilm growth time. LD and ML profiles of 7-day lesions seem to be the most suitable for remineralization studies. In conclusion, using the evaluated artificial mouth, early-stage caries suitable for products' evaluation studies was produced within 7 days of exposure to microbial biofilm.

3.
Clin Cosmet Investig Dent ; 15: 1-11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36636574

RESUMO

Purpose: Erosive tooth wear (ETW) is characterized by subsurface demineralization and tooth substance loss with crater formation. Remineralization of subsurface demineralization has previously been demonstrated; however, repair of the eroded surface is still under investigation. This study investigated the effectiveness of mouthwashes containing hydrolyzed wheat protein (HWP) in repairing ETW through promotion of organized crystal growth. Methods: Enamel Erosion was created on 210 enamel blocks by 10-minute demineralization in 1% Citric Acid (pH 3.5). Then, blocks were randomly assigned to seven groups (30/group); (A) 0.2% HWP, B) 1% HWP, (C) 2% HWP, (D) 1% HWP + 0.05% NaF, (E) Listerine™ mouthwash, (F) 0.02% NaF Crest™ Pro-health mouthwash and (G) artificial saliva (AS) only. Groups were subjected to daily pH-cycling consisting of one 5-minute erosive challenge with citric acid, three 1-minute mouthwash treatment periods, and then storage in AS for the rest of the time for 28 days. Treatment effects were assessed using SEM-EDX. Statistical analysis was by ANOVA and Tukey's multiple comparison. Results: In groups exposed to HWP-containing mouthwashes, there was growth of fiber-like crystals that increased in packing density in a dose-dependent manner (0.2%, 1%, 2%) on the eroded enamel surfaces, with increased calcium and phosphate contents on the treated surfaces. The non-HWP-containing groups had the eroded surfaces covered by structureless deposit layer firmly attached to the surface. Conclusion: Treating eroded enamel surface with HWP-containing mouthwash resulted in repair of the damaged tissue by formation of a protective layer of crystal deposits within and on the eroded enamel tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...