Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 156(8): 084115, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35232178

RESUMO

Disordered or even seemingly amorphous, donor-acceptor type, conjugated copolymers with high charge-carrier mobility have emerged as a new class of functional materials, where transport along the conjugated backbone is key. Here, we report on non-adiabatic molecular dynamics simulations of charge-carrier transport along chains of poly (indacenodithiophene-co-benzothiadiazole), within a model Hamiltonian parameterized against first-principles calculations. We predict thermally activated charge transport associated with a slightly twisted ground-state conformation, on par with experimental results. Our results also demonstrate that the energy mismatch between the hole on the donor vs the acceptor units of the copolymer drives localization of the charge carriers and limits the intra-chain charge-carrier mobility. We predict that room-temperature mobility values in excess of 10 cm2 V-1 s-1 can be achieved through proper chemical tuning of the component monomer units.

2.
Nature ; 597(7878): 666-671, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588666

RESUMO

The use of non-fullerene acceptors (NFAs) in organic solar cells has led to power conversion efficiencies as high as 18%1. However, organic solar cells are still less efficient than inorganic solar cells, which typically have power conversion efficiencies of more than 20%2. A key reason for this difference is that organic solar cells have low open-circuit voltages relative to their optical bandgaps3, owing to non-radiative recombination4. For organic solar cells to compete with inorganic solar cells in terms of efficiency, non-radiative loss pathways must be identified and suppressed. Here we show that in most organic solar cells that use NFAs, the majority of charge recombination under open-circuit conditions proceeds via the formation of non-emissive NFA triplet excitons; in the benchmark PM6:Y6 blend5, this fraction reaches 90%, reducing the open-circuit voltage by 60 mV. We prevent recombination via this non-radiative channel by engineering substantial hybridization between the NFA triplet excitons and the spin-triplet charge-transfer excitons. Modelling suggests that the rate of back charge transfer from spin-triplet charge-transfer excitons to molecular triplet excitons may be reduced by an order of magnitude, enabling re-dissociation of the spin-triplet charge-transfer exciton. We demonstrate NFA systems in which the formation of triplet excitons is suppressed. This work thus provides a design pathway for organic solar cells with power conversion efficiencies of 20% or more.

3.
Materials (Basel) ; 13(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235524

RESUMO

Organic semiconductors (OSCs) are promising transducer materials when applied in organic field-effect transistors (OFETs) taking advantage of their electrical properties which highly depend on the morphology of the semiconducting film. In this work, the effects of OSC thickness (ranging from 5 to 15 nm) on the piezoresistive sensitivity of a high-performance p-type organic semiconductor, namely dinaphtho [2,3-b:2,3-f] thieno [3,2-b] thiophene (DNTT), were investigated. Critical thickness of 6 nm thin film DNTT, thickness corresponding to the appearance of charge carrier percolation paths in the material, was demonstrated to be highly sensitive to mechanical strain. Gauge factors (GFs) of 42 ± 5 and -31 ± 6 were measured from the variation of output currents of 6 nm thick DNTT-based OFETs engineered on top of polymer cantilevers in response to compressive and tensile strain, respectively. The relationship between the morphologies of the different thin films and their corresponding piezoresistive sensitivities was discussed.

4.
Phys Chem Chem Phys ; 21(45): 25023-25034, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31690890

RESUMO

We compare two small π-conjugated donor-bridge-acceptor organic molecules differing mainly in the number of thiophene rings in their bridging motifs (1 ring in 1; 2 rings in 2) with the aim of rationalizing the origin of the enhancement in the singlet exciton diffusion coefficient and length of 1 with respect to 2. By combining force field molecular dynamics and micro electrostatic schemes with time-dependent density functional theory and kinetic Monte Carlo simulations, we dissect the nature of the lowest electronic excitations in amorphous thin films of these molecules and model the transport of singlet excitons across their broadly disordered energy landscapes. In addition to a longer excited-state lifetime associated with a more pronounced intramolecular charge-transfer character, our calculations reveal that singlet excitons in 1 are capable of funneling through long-distance hopping percolation pathways, presumably as a result of the less anisotropic shape of the molecule, which favours long-range 3D transport.

5.
Sci Adv ; 5(8): eaaw7757, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31448330

RESUMO

Intrachain charge transport is unique to conjugated polymers distinct from inorganic and small molecular semiconductors and is key to achieving high-performance organic electronics. Polymer backbone planarity and thin film morphology sensitively modulate intrachain charge transport. However, simple, generic nonsynthetic approaches for tuning backbone planarity and the ensuing multiscale assembly process do not exist. We first demonstrate that printing flow is capable of planarizing the originally twisted polymer backbone to substantially increase the conjugation length. This conformation change leads to a marked morphological transition from chiral, twinned domains to achiral, highly aligned morphology, hence a fourfold increase in charge carrier mobilities. We found a surprising mechanism that flow extinguishes a lyotropic twist-bend mesophase upon backbone planarization, leading to the observed morphology and electronic structure transitions.

6.
Phys Chem Chem Phys ; 21(33): 18300-18309, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31396614

RESUMO

Perylene bisimides (PBIs) are dyes known for combining high absorption and emission in the visible region with thermal and photochemical stability. H-bond-directed aggregation driven by free imide groups has been reported to promote the uncommon J-type aggregate formation of PBIs. J-aggregates are highly desired thanks to their bathochromically shifted narrow absorption and fluorescence due to excitonic coupling, together with hyperchromicity and superradiance compared to the monomer. Herein we present the water soluble MEG-PBI showing interesting aggregation in water and in the solid state. Unlike its hydrophobic counterparts, MEG-PBI aggregates in water with increasing temperature, indicating entropy-driven self-assembly. Temperature-dependent Resonance Raman (RR) spectroscopy was employed for the structural characterization of MEG-PBI in aqueous solution versus toluene and in aggregated thin films, employing excitation at different wavelengths to probe the contribution of various chromophores to the supramolecular structure of the aggregate. We find that the perylene core distorts upon aggregation, where the bonds along the perylene long N-N axis lengthen and the ones perpendicular to that shorten, suggesting a head-to-tail arrangement due to H-bonding between neighboring units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...