Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(19): 12537-12546, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38684051

RESUMO

This paper describes how branch lengths of anisotropic nanoparticles can affect interactions between grafted ligands and cell-membrane receptors. Using live-cell, single-particle tracking, we found that DNA aptamer-gold nanostar nanoconstructs with longer branches showed improved binding efficacy to human epidermal growth factor receptor 2 (HER2) on cancer cell membranes. Inhibiting nanoconstruct-HER2 binding promoted nonspecific interactions, which increased the rotational speed of long-branched nanoconstructs but did not affect that of short-branched constructs. Bivariate analysis of the rotational and translational dynamics showed that longer branch lengths increased the ratio of targeting to nontargeting interactions. We also found that longer branches increased the nanoconstruct-cell interaction times before internalization and decreased intracellular trafficking velocities. Differences in binding efficacy revealed by single-particle dynamics can be attributed to the distinct protein corona distributions on short- and long-branched nanoconstructs, as validated by transmission electron microscopy. Minimal protein adsorption at the high positive curvature tips of long-branched nanoconstructs facilitated binding of DNA aptamer ligands to HER2. Our study reveals the significance of nanoparticle branch length in regulating local chemical environment and interactions with live cells at the single-particle level.


Assuntos
Aptâmeros de Nucleotídeos , Membrana Celular , Ouro , Nanopartículas Metálicas , Receptor ErbB-2 , Humanos , Anisotropia , Ouro/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Receptor ErbB-2/metabolismo , Receptor ErbB-2/química , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Ligantes
2.
Nano Lett ; 24(1): 519-524, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38126338

RESUMO

This work demonstrates that targeting ligand density on nanoparticles can affect interactions between the nanoconstructs and cell membrane receptors. We discovered that when the separation between covalently grafted DNA aptamers on gold nanostars was comparable to the distance between binding sites on a receptor dimer (matched density; MD), nanoconstructs exhibited a higher selectivity for binding to the dimeric form of the protein. Single-particle dynamics of MD nanoconstructs showed slower rotational rates and larger translational footprints on cancer cells expressing more dimeric forms of receptors (dimer+) compared with cells having more monomeric forms (dimer-). In contrast, nanoconstructs with either increased (nonmatched density; NDlow) or decreased ligand spacing (NDhigh) had minimal changes in dynamics on either dimer+ or dimer- cells. Real-time, single-particle analyses can reveal the importance of nanoconstruct ligand density for the selective targeting of membrane receptors in live cells.


Assuntos
Nanopartículas , Ligantes , Membrana Celular/metabolismo , Nanopartículas/química , Polímeros/metabolismo , Sítios de Ligação
3.
Nano Lett ; 23(23): 11260-11265, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38048438

RESUMO

This work reports a scaffold-templated, bottom-up synthesis of 3D anisotropic nanofeatures on periodic arrays of gold nanoparticles (AuNPs). Our method relies on substrate-bound AuNPs as large seeds with hemispherical shapes and smooth surfaces after the thermal annealing of as-fabricated particles. Spiky features were grown by immersing the patterned AuNPs into a growth solution consisting of a gold salt and Good's buffer; the number and length of spikes could be tuned by changing the solution pH and buffer concentration. Intermediate structures that informed the growth mechanism were characterized as a function of time by correlating the optical properties and spike features. Large-area (cm2) spiky AuNP arrays exhibited surface-enhanced Raman spectroscopy enhancement that was associated with increased numbers of high-aspect-ratio spikes formed on the AuNP seeds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...