Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004293

RESUMO

Sumoylation is a post-translation modification (PTM) mechanism that involves many critical biological processes, such as gene expression, localizing and stabilizing proteins, and replicating the genome. Moreover, sumoylation sites are associated with different diseases, including Parkinson's and Alzheimer's. Due to its vital role in the biological process, identifying sumoylation sites in proteins is significant for monitoring protein functions and discovering multiple diseases. Therefore, in the literature, several computational models utilizing conventional ML methods have been introduced to classify sumoylation sites. However, these models cannot accurately classify the sumoylation sites due to intrinsic limitations associated with the conventional learning methods. This paper proposes a robust computational model (called Deep-Sumo) for predicting sumoylation sites based on a deep-learning algorithm with efficient feature representation methods. The proposed model employs a half-sphere exposure method to represent protein sequences in a feature vector. Principal Component Analysis is applied to extract discriminative features by eliminating noisy and redundant features. The discriminant features are given to a multilayer Deep Neural Network (DNN) model to predict sumoylation sites accurately. The performance of the proposed model is extensively evaluated using a 10-fold cross-validation test by considering various statistical-based performance measurement metrics. Initially, the proposed DNN is compared with the traditional learning algorithm, and subsequently, the performance of the Deep-Sumo is compared with the existing models. The validation results show that the proposed model reports an average accuracy of 96.47%, with improvement compared with the existing models. It is anticipated that the proposed model can be used as an effective tool for drug discovery and the diagnosis of multiple diseases.

2.
Sensors (Basel) ; 23(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571732

RESUMO

In order for a country's economy to grow, agricultural development is essential. Plant diseases, however, severely hamper crop growth rate and quality. In the absence of domain experts and with low contrast information, accurate identification of these diseases is very challenging and time-consuming. This leads to an agricultural management system in need of a method for automatically detecting disease at an early stage. As a consequence of dimensionality reduction, CNN-based models use pooling layers, which results in the loss of vital information, including the precise location of the most prominent features. In response to these challenges, we propose a fine-tuned technique, GreenViT, for detecting plant infections and diseases based on Vision Transformers (ViTs). Similar to word embedding, we divide the input image into smaller blocks or patches and feed these to the ViT sequentially. Our approach leverages the strengths of ViTs in order to overcome the problems associated with CNN-based models. Experiments on widely used benchmark datasets were conducted to evaluate the proposed GreenViT performance. Based on the obtained experimental outcomes, the proposed technique outperforms state-of-the-art (SOTA) CNN models for detecting plant diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...