Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 446(4): 1132-8, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24667600

RESUMO

Recent efforts have underlined the role of Serine/Threonine Protein Kinases (STPKs) in growth, pathogenesis and cell wall metabolism in mycobacteria. Herein, we demonstrated that the Mycobacterium tuberculosis EthR, a transcriptional repressor that regulates the activation process of the antitubercular drug ethionamide (ETH) is a specific substrate of the mycobacterial kinase PknF. ETH is a prodrug that must undergo bioactivation by the monooxygenease EthA to exert its antimycobacterial activity and previous studies reported that EthR represses transcription of ethA by binding to the ethA-ethR intergenic region. Mass spectrometry analyses and site-directed mutagenesis identified a set of four phosphoacceptors, namely Thr2, Thr3, Ser4 and Ser7. This was further supported by the complete loss of PknF-dependent phosphorylation of a phosphoablative EthR mutant protein. Importantly, a phosphomimetic version of EthR, in which all phosphosites were replaced by Asp residues, exhibited markedly decreased DNA-binding activity compared with the wild-type protein. Together, these findings are the first demonstration of EthR phosphorylation and indicate that phosphorylation negatively affects its DNA-binding activity, which may impact ETH resistance levels in M. tb.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Antituberculosos/metabolismo , Proteínas de Bactérias/genética , Etionamida/metabolismo , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/genética , Fosforilação , Proteínas Repressoras/química , Proteínas Repressoras/genética , Serina/metabolismo , Treonina/metabolismo , Tuberculose/microbiologia
2.
Anal Biochem ; 452: 54-66, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24561027

RESUMO

EthR is a mycobacterial repressor that limits the bioactivation of ethionamide, a commonly used anti-tuberculosis second-line drug. Several efforts have been deployed to identify EthR inhibitors abolishing the DNA-binding activity of the repressor. This led to the demonstration that stimulating the bioactivation of Eth through EthR inhibition could be an alternative way to fight Mycobacterium tuberculosis. We propose a new surface plasmon resonance (SPR) methodology to study the affinity between inhibitors and EthR. Interestingly, the binding between inhibitors and immobilized EthR produced a dose-dependent negative SPR signal. We demonstrate that this signal reveals the affinity of small molecules for the repressor. The affinity constants (K(D)) correlate with their capacity to inhibit the binding of EthR to DNA. We hypothesize that conformational changes in EthR during ligand interaction could be responsible for this SPR signal. Practically, this unconventional result opens perspectives onto the development of an SPR assay that would at the same time reveal structural changes in the target upon binding with an inhibitor and the binding constant of this interaction.


Assuntos
Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Biotinilação , Ligantes , Mycobacterium tuberculosis , Proteínas Repressoras/química , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...