Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World Neurosurg X ; 23: 100377, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38698836

RESUMO

Objective: This study aimed to compare microvascular Doppler sonography (MDS) and laser speckle contrast imaging (LSCI) for assessing vessel patency and aneurysm occlusion during microsurgical clipping of intracranial aneurysms. Methods: MDS and LSCI were used after clip placement during six neurovascular procedures including six patients, and agreement between the two techniques was assessed. LSCI was performed in parallel or right after MDS evaluation. The Doppler response was assessed through listening while flow in the LSCI videos was evaluated by three blinded neurovascular surgeons after the surgery. Statistical analysis determined the agreement between the techniques in assessing flow in 18 regions of interest (ROIs). Results: Agreement between MDS and LSCI in assessing vessel patency was observed in 87 % of the ROIs. LSCI accurately identified flow in 93.3 % of assessable ROIs, with no false positive or negative measurements. Three ROIs were not assessable with LSCI due to motion artifacts or poor image quality. No complications were observed. Conclusions: LSCI demonstrated high agreement with MDS in assessing vessel patency during microsurgical clipping of intracranial aneurysms. It provided continuous, real-time, full-field imaging with high spatial resolution and temporal resolution. While MDS allowed evaluation of deep vascular regions, LSCI complemented it by offering unlimited assessment of surrounding vessels.

2.
Acta Neurochir (Wien) ; 166(1): 27, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261093

RESUMO

Adenosine induced cardiac arrest (AiCA) is one of the methods used to facilitate microsurgical aneurysm clipping by providing more visibility and less pressure in the aneurysmal sac and neighboring vessels. We report the use of laser speckle contrast imaging (LSCI) during AiCA to monitor the changes in pulsation and perfusion on the cortical surface during adenosine induced cardiac arrest for aneurysm clipping surgery. Application of this technology for perfusion monitoring may improve workflow and surgical guidance and provide valuable feedback continuously throughout the procedure. ClinicalTrials.gov identifier: NCT0502840.


Assuntos
Aneurisma , Imagem de Contraste de Manchas a Laser , Humanos , Perfusão , Adenosina , Parada Cardíaca Induzida
3.
Neurosurgery ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032222

RESUMO

BACKGROUND AND OBJECTIVES: Laser speckle contrast imaging (LSCI) has emerged as a promising tool for assessment of vessel flow during neurosurgery. We aimed to investigate the feasibility of visualizing vessel flow in the macrocirculation with a new fully microscope-integrated LSCI system and assess the validity and objectivity of findings compared with fluorescence angiography (FA). METHODS: This is a single-center prospective observational study enrolling adult patients requiring microsurgical treatment for brain vascular pathologies or brain tumors. Three independent raters, blinded toward findings of FA, reviewed regions of interest (ROIs) placed in exposed vessels and target structures. The primary end point was the validity of LSCI for assessment of vessel flow as measured by the agreement with FA. The secondary end point was objectivity, measured as the inter-rater agreement of LSCI findings. RESULTS: During 18 surgical procedures, 23 observations using FA and LSCI were captured simultaneously. Using LSCI, vessel flow was assessable in 62 (86.1%) and not assessable in 10 (13.9%) ROIs. The agreement between LSCI and FA was 86.1%, with an agreement coefficient of 0.85 (95% CI: 0.75-0.94). Disagreement between LSCI and FA was observed in the 10 ROIs that were not assessable. The agreement between ROIs that were assessable using LSCI and FA was 100%. The inter-rater agreement of LSCI findings was 87.9%, with an agreement coefficient of 0.86 (95% CI: 0.79-0.94). CONCLUSION: Fully microscope-integrated LSCI is feasible and has a high potential for clinical utility. Because of its characteristics, LSCI can be viewed as a full-field visual micro-Doppler that can be used as a complementary method to FA for assessing vessel flow during neurosurgery. Despite technical limitations related to the early development phase of the fully microscope-integrated system, we demonstrated reasonable validity and objectivity of findings compared with FA. Further research and refinement of the system may enhance its value in neurosurgical applications.

4.
Front Surg ; 10: 1285758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162090

RESUMO

AVM surgery is challenging due to progressive and often unforeseeable flow changes during its resection which involve both the AVM and the surrounding brain tissue. Hence, accurate monitoring of blood flow is crucial to minimize complications and improve outcomes. The following case report illustrates the usefulness of complimentary non-invasive tools that can provide real time blood flow assessment. We present a case demonstrating the application of laser speckle contrast imaging (LSCI) in evaluating vessel flow dynamics during AVM surgery. A 30-year-old female presented with sudden headaches, nausea, vomiting, and vertigo. Emergency imaging revealed a ruptured cerebellar AVM necessitating surgical intervention. LSCI was integrated into the surgical workflow, providing continuous visualization of relative cerebral blood flow (rCBF) of vessels surrounding the AVM. Before AVM resection, LSCI measurements revealed the arterialized vasculature supplying the AVM nidus; measurements after AVM resection showed significant hemodynamic changes including normal flow in the initially arterialized AVM draining veins and adjacent arterial branches. LSCI also detected blood flow alterations during temporary occlusion, enabling assessment of downstream vascular regions. In conclusion, we provide an example supporting the utility of LSCI for real-time hemodynamic monitoring during AVM resection surgery. LSCI offers non-invasive, continuous, and immediate blood flow information, complementing conventional imaging methods like indocyanine green angiography. Additionally, our findings suggest that LSCI has the potential to provide a non-invasive means of identifying the specific superficial vessel branches or cortical areas that receive blood supply from a particular vessel.

5.
Genome Res ; 30(10): 1379-1392, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32967914

RESUMO

Sex differences in adipose tissue distribution and function are associated with sex differences in cardiometabolic disease. While many studies have revealed sex differences in adipocyte cell signaling and physiology, there is a relative dearth of information regarding sex differences in transcript abundance and regulation. We investigated sex differences in subcutaneous adipose tissue transcriptional regulation using omic-scale data from ∼3000 geographically and ethnically diverse human samples. We identified 162 genes with robust sex differences in expression. Differentially expressed genes were implicated in oxidative phosphorylation and adipogenesis. We further determined that sex differences in gene expression levels could be related to sex differences in the genetics of gene expression regulation. Our analyses revealed sex-specific genetic associations, and this finding was replicated in a study of 98 inbred mouse strains. The genes under genetic regulation in human and mouse were enriched for oxidative phosphorylation and adipogenesis. Enrichment analysis showed that the associated genetic loci resided within binding motifs for adipogenic transcription factors (e.g., PPARG and EGR1). We demonstrated that sex differences in gene expression could be influenced by sex differences in genetic regulation for six genes (e.g., FADS1 and MAP1B). These genes exhibited dynamic expression patterns during adipogenesis and robust expression in mature human adipocytes. Our results support a role for adipogenesis-related genes in subcutaneous adipose tissue sex differences in the genetic and environmental regulation of gene expression.


Assuntos
Adipogenia/genética , Tecido Adiposo/metabolismo , Regulação da Expressão Gênica , Caracteres Sexuais , Dessaturase de Ácido Graxo Delta-5 , Feminino , Genótipo , Humanos , Masculino , Fosforilação Oxidativa , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...