Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 14(2): 258-273, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37823831

RESUMO

Immune checkpoint inhibition (ICI) is effective for replication-repair-deficient, high-grade gliomas (RRD-HGG). The clinical/biological impact of immune-directed approaches after failing ICI monotherapy is unknown. We performed an international study on 75 patients treated with anti-PD-1; 20 are progression free (median follow-up, 3.7 years). After second progression/recurrence (n = 55), continuing ICI-based salvage prolonged survival to 11.6 months (n = 38; P < 0.001), particularly for those with extreme mutation burden (P = 0.03). Delayed, sustained responses were observed, associated with changes in mutational spectra and the immune microenvironment. Response to reirradiation was explained by an absence of deleterious postradiation indel signatures (ID8). CTLA4 expression increased over time, and subsequent CTLA4 inhibition resulted in response/stable disease in 75%. RAS-MAPK-pathway inhibition led to the reinvigoration of peripheral immune and radiologic responses. Local (flare) and systemic immune adverse events were frequent (biallelic mismatch-repair deficiency > Lynch syndrome). We provide a mechanistic rationale for the sustained benefit in RRD-HGG from immune-directed/synergistic salvage therapies. Future approaches need to be tailored to patient and tumor biology. SIGNIFICANCE: Hypermutant RRD-HGG are susceptible to checkpoint inhibitors beyond initial progression, leading to improved survival when reirradiation and synergistic immune/targeted agents are added. This is driven by their unique biological and immune properties, which evolve over time. Future research should focus on combinatorial regimens that increase patient survival while limiting immune toxicity. This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioma , Humanos , Antígeno CTLA-4 , Glioma/tratamento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Antineoplásicos/uso terapêutico , Imunoterapia , Microambiente Tumoral
2.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000902

RESUMO

Phylogenetic comparative methods are increasingly used to test hypotheses about the evolutionary processes that drive divergence in gene expression among species. However, it is unknown whether the distributional assumptions of phylogenetic models designed for quantitative phenotypic traits are realistic for expression data and importantly, the reliability of conclusions of phylogenetic comparative studies of gene expression may depend on whether the data is well described by the chosen model. To evaluate this, we first fit several phylogenetic models of trait evolution to 8 previously published comparative expression datasets, comprising a total of 54,774 genes with 145,927 unique gene-tissue combinations. Using a previously developed approach, we then assessed how well the best model of the set described the data in an absolute (not just relative) sense. First, we find that Ornstein-Uhlenbeck models, in which expression values are constrained around an optimum, were the preferred models for 66% of gene-tissue combinations. Second, we find that for 61% of gene-tissue combinations, the best-fit model of the set was found to perform well; the rest were found to be performing poorly by at least one of the test statistics we examined. Third, we find that when simple models do not perform well, this appears to be typically a consequence of failing to fully account for heterogeneity in the rate of the evolution. We advocate that assessment of model performance should become a routine component of phylogenetic comparative expression studies; doing so can improve the reliability of inferences and inspire the development of novel models.


Assuntos
Evolução Biológica , Modelos Genéticos , Filogenia , Reprodutibilidade dos Testes , Fenótipo , Expressão Gênica
3.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645857

RESUMO

Phylogenetic comparative methods are increasingly used to test hypotheses about the evolutionary processes that drive divergence in gene expression among species. However, it is unknown whether the distributional assumptions of phylogenetic models designed for quantitative phenotypic traits are realistic for expression data and importantly, the reliability of conclusions of phylogenetic comparative studies of gene expression may depend on whether the data is well-described by the chosen model. To evaluate this, we first fit several phylogenetic models of trait evolution to 8 previously published comparative expression datasets, comprising a total of 54,774 genes with 145,927 unique gene-tissue combinations. Using a previously developed approach, we then assessed how well the best model of the set described the data in an absolute (not just relative) sense. First, we find that Ornstein-Uhlenbeck models, in which expression values are constrained around an optimum, were the preferred model for 66% of gene-tissue combinations. Second, we find that for 61% of gene-tissue combinations, the best fit model of the set was found to perform well; the rest were found to be performing poorly by at least one of the test statistics we examined. Third, we find that when simple models do not perform well, this appears to be typically a consequence of failing to fully account for heterogeneity in the rate of the evolution. We advocate that assessment of model performance should become a routine component of phylogenetic comparative expression studies; doing so can improve the reliability of inferences and inspire the development of novel models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...