Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Calcium ; 121: 102894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728789

RESUMO

TRPV2 voltage-insensitive, calcium-permeable ion channels play important roles in cancer progression, immune response, and neuronal development. Despite TRPV2's physiological impact, underlying endogenous proteins mediating TRPV2 responses and affected signaling pathways remain elusive. Using quantitative peroxidase-catalyzed (APEX2) proximity proteomics we uncover dynamic changes in the TRPV2-proximal proteome and identify calcium signaling and cell adhesion factors recruited to the molecular channel neighborhood in response to activation. Quantitative TRPV2 proximity proteomics further revealed activation-induced enrichment of protein clusters with biological functions in neural and cellular projection. We demonstrate a functional connection between TRPV2 and the neural immunoglobulin cell adhesion molecules NCAM and L1CAM. NCAM and L1CAM stimulation robustly induces TRPV2 [Ca2+]I flux in neuronal PC12 cells and this TRPV2-specific [Ca2+]I flux requires activation of the protein kinase PKCα. TRPV2 expression directly impacts neurite lengths that are modulated by NCAM or L1CAM stimulation. Hence, TRPV2's calcium signaling plays a previously undescribed, yet vital role in cell adhesion, and TRPV2 calcium flux and neurite development are intricately linked via NCAM and L1CAM cell adhesion proteins.


Assuntos
Cálcio , Molécula L1 de Adesão de Célula Nervosa , Moléculas de Adesão de Célula Nervosa , Crescimento Neuronal , Proteoma , Canais de Cátion TRPV , Animais , Humanos , Ratos , Cálcio/metabolismo , Sinalização do Cálcio , Adesão Celular , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Células PC12 , Proteína Quinase C-alfa/metabolismo , Proteoma/metabolismo , Canais de Cátion TRPV/metabolismo , Antígeno CD56/metabolismo
2.
EMBO J ; 43(11): 2264-2290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38671253

RESUMO

Transient receptor potential (TRP) ion channels are involved in the surveillance or regulation of the acid-base balance. Here, we demonstrate that weak carbonic acids, including acetic acid, lactic acid, and CO2 activate and sensitize TRPV2 through a mechanism requiring permeation through the cell membrane. TRPV2 channels in cell-free inside-out patches maintain weak acid-sensitivity, but protons applied on either side of the membrane do not induce channel activation or sensitization. The involvement of proton modulation sites for weak acid-sensitivity was supported by the identification of titratable extracellular (Glu495, Glu561) and intracellular (His521) residues on a cryo-EM structure of rat TRPV2 (rTRPV2) treated with acetic acid. Molecular dynamics simulations as well as patch clamp experiments on mutant rTRPV2 constructs confirmed that these residues are critical for weak acid-sensitivity. We also demonstrate that the pore residue Glu609 dictates an inhibition of weak acid-induced currents by extracellular calcium. Finally, TRPV2-expression in HEK293 cells is associated with an increased weak acid-induced cytotoxicity. Together, our data provide new insights into weak acids as endogenous modulators of TRPV2.


Assuntos
Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/química , Humanos , Células HEK293 , Animais , Ratos , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica , Cálcio/metabolismo , Técnicas de Patch-Clamp , Ácidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...