Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Minim Invasive Ther Allied Technol ; 31(1): 42-49, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32255393

RESUMO

INTRODUCTION: During the last two decades, many surgical procedures have evolved from open surgery to minimally invasive surgery (MIS). This limited invasiveness has motivated the development of robotic assistance platforms to obtain better surgical outcomes. Nowadays, the da Vinci robot is a commercial tele-robotic platform widely used for different surgical applications. MATERIAL AND METHODS: In this work, the da Vinci Research Kit (dVRK), namely the research version of the da Vinci, is used to manipulate a novel microwave device in a teleoperation scenario. The dVRK provides an open source platform, so that the novel microwave tool, dedicated to prevention bleeding during hepatic resection surgery, is mechanically integrated on the slave side, while the software interface is adapted in order to correctly control tool pose. Tool integration is validated through in-vitro and ex-vivo tests performed by expert surgeons, meanwhile the coagulative efficacy of the developed tool in a perfused liver model was proved in in-vivo tests. RESULTS AND CONCLUSIONS: An innovative microwave tool for liver robotic resection has been realized and integrated into a surgical robot. The tool can be easily operated through the dVRK without limiting the intuitive and friendly use, and thus easily reaching the hemostasis of vessels.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Fígado/cirurgia , Micro-Ondas , Procedimentos Cirúrgicos Minimamente Invasivos
2.
Int J Artif Organs ; 43(1): 3-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31900096

RESUMO

Ex vivo testing is a fundamental step in the development of new medical devices; indeed without it, it is impossible to proceed with in vivo tests. At the University of Florence, a robotic tool for microwave thermal ablation is under development. Up to now, the thermoablation tests for the validation of the tool were carried out on non-perfused ex vivo livers, providing results that inevitably differ from those obtainable with an in vivo liver. The aim is to design, and consequently create, a compact and transportable system which allows to perfuse a swine liver with physiological solution and heparin. This device should also allow the organ to be transported from the explantation place to the laboratory, keeping it under normothermal condition. The perfusor was designed to simulate the physiological flow within the liver in the most realistic way possible. The design, construction, and optimization of the perfusor have been addressed using the physiological values of hepatic flow and pressure identified in the literature, neglecting in the first instance any load losses. Therefore, open circuit tests were conducted, validated through perfusion tests on freshly explanted pig liver; during these tests, the surface temperature of the organ was recorded using an infrared camera, and the fluid temperature was verified using an immersion probe. The perfusion test showed a good alignment with the open circuit tests, demonstrating the validity of the simplifications adopted to treat the complex vascular structure of the liver.


Assuntos
Fígado/fisiologia , Preservação de Órgãos/instrumentação , Perfusão/instrumentação , Animais , Desenho de Equipamento , Transplante de Fígado , Modelos Animais , Preservação de Órgãos/métodos , Suínos , Temperatura
3.
Int J Hyperthermia ; 36(1): 75-86, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30484344

RESUMO

PURPOSE: Bleeding from parenchyma transection during a robotic hepatic surgery remains the most critical point affecting postoperative recovery and long-term survival. Various robotic devices with different types of energies have been proposed; however, each of these lack in steerability, efficacy, or accuracy. The aim of this work is to evaluate the feasibility and performance of a new steerable microwave resection device intended for minimizing intraoperative blood loss during laparoscopic and robotic liver resections. METHODS: The new device operating at 2.45 GHz was designed to accommodate the engineering constraints derived from its use for robotic surgery or laparoscopy, in which a steerable head is required and the internal cooling of forced gas or water is undesirable. The device design, analysis, and optimization were addressed using the most advanced commercial electromagnetic and thermal solvers to achieve the best results. To experimentally validate the results of the numerical analysis, many ablations were performed on a freshly explanted bovine liver by using a single device prototype with three levels of energy supplied to the tissue. During the ablation procedures, the time, temperature, and shape of the thermal lesion were recorded using thermocouples and an infra-red thermos camera. SUMMARY: Ex vivo tests showed good agreement with the numerical simulations, demonstrating the validity of the simplifications adopted to deal with the complex phenomena involved in the extreme hyperthermia of a living tissue. The high performance, thermal reliability, and robustness of the developed device were also demonstrated along with the possibility of reducing operation time and blood loss.


Assuntos
Técnicas de Ablação/métodos , Laparoscopia/métodos , Fígado/cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...