Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Diabetes ; 68(2): 441-456, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30487263

RESUMO

To identify genetic variants associated with diabetic retinopathy (DR), we performed a large multiethnic genome-wide association study. Discovery included eight European cohorts (n = 3,246) and seven African American cohorts (n = 2,611). We meta-analyzed across cohorts using inverse-variance weighting, with and without liability threshold modeling of glycemic control and duration of diabetes. Variants with a P value <1 × 10-5 were investigated in replication cohorts that included 18,545 European, 16,453 Asian, and 2,710 Hispanic subjects. After correction for multiple testing, the C allele of rs142293996 in an intron of nuclear VCP-like (NVL) was associated with DR in European discovery cohorts (P = 2.1 × 10-9), but did not reach genome-wide significance after meta-analysis with replication cohorts. We applied the Disease Association Protein-Protein Link Evaluator (DAPPLE) to our discovery results to test for evidence of risk being spread across underlying molecular pathways. One protein-protein interaction network built from genes in regions associated with proliferative DR was found to have significant connectivity (P = 0.0009) and corroborated with gene set enrichment analyses. These findings suggest that genetic variation in NVL, as well as variation within a protein-protein interaction network that includes genes implicated in inflammation, may influence risk for DR.


Assuntos
Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla/métodos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética , Predisposição Genética para Doença , Genótipo , Hemoglobinas Glicadas/metabolismo , Humanos , Metanálise como Assunto , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica
3.
Sci Rep ; 8(1): 5603, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618726

RESUMO

Genome-wide association studies have identified numerous variants associated with lipid levels; yet, the majority are located in non-coding regions with unclear mechanisms. In the Insulin Resistance Atherosclerosis Family Study (IRASFS), heritability estimates suggest a strong genetic basis: low-density lipoprotein (LDL, h2 = 0.50), high-density lipoprotein (HDL, h2 = 0.57), total cholesterol (TC, h2 = 0.53), and triglyceride (TG, h2 = 0.42) levels. Exome sequencing of 1,205 Mexican Americans (90 pedigrees) from the IRASFS identified 548,889 variants and association and linkage analyses with lipid levels were performed. One genome-wide significant signal was detected in APOA5 with TG (rs651821, PTG = 3.67 × 10-10, LODTG = 2.36, MAF = 14.2%). In addition, two correlated SNPs (r2 = 1.0) rs189547099 (PTG = 6.31 × 10-08, LODTG = 3.13, MAF = 0.50%) and chr4:157997598 (PTG = 6.31 × 10-08, LODTG = 3.13, MAF = 0.50%) reached exome-wide significance (P < 9.11 × 10-08). rs189547099 is an intronic SNP in FNIP2 and SNP chr4:157997598 is intronic in GLRB. Linkage analysis revealed 46 SNPs with a LOD > 3 with the strongest signal at rs1141070 (LODLDL = 4.30, PLDL = 0.33, MAF = 21.6%) in DFFB. A total of 53 nominally associated variants (P < 5.00 × 10-05, MAF ≥ 1.0%) were selected for replication in six Mexican-American cohorts (N = 3,280). The strongest signal observed was a synonymous variant (rs1160983, PLDL = 4.44 × 10-17, MAF = 2.7%) in TOMM40. Beyond primary findings, previously reported lipid loci were fine-mapped using exome sequencing in IRASFS. These results support that exome sequencing complements and extends insights into the genetics of lipid levels.


Assuntos
Aterosclerose/patologia , Variação Genética , Lipídeos/sangue , Americanos Mexicanos/genética , Adulto , Apolipoproteína A-V/genética , Aterosclerose/genética , Proteínas de Transporte/genética , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Resistência à Insulina/genética , Lipoproteínas HDL/sangue , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Triglicerídeos/sangue , Sequenciamento do Exoma
4.
Genet Epidemiol ; 41(4): 353-362, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28378447

RESUMO

Insertions and deletions (INDELs) represent a significant fraction of interindividual variation in the human genome yet their contribution to phenotypes is poorly understood. To confirm the quality of imputed INDELs and investigate their roles in mediating cardiometabolic phenotypes, genome-wide association and linkage analyses were performed for 15 phenotypes with 1,273,952 imputed INDELs in 1,024 Mexican-origin Americans. Imputation quality was validated using whole exome sequencing with an average kappa of 0.93 in common INDELs (minor allele frequencies [MAFs] ≥ 5%). Association analysis revealed one genome-wide significant association signal for the cholesterylester transfer protein gene (CETP) with high-density lipoprotein levels (rs36229491, P = 3.06 × 10-12 ); linkage analysis identified two peaks with logarithm of the odds (LOD) > 5 (rs60560566, LOD = 5.36 with insulin sensitivity (SI ) and rs5825825, LOD = 5.11 with adiponectin levels). Suggestive overlapping signals between linkage and association were observed: rs59849892 in the WSC domain containing 2 gene (WSCD2) was associated and nominally linked with SI (P = 1.17 × 10-7 , LOD = 1.99). This gene has been implicated in glucose metabolism in human islet cell expression studies. In addition, rs201606363 was linked and nominally associated with low-density lipoprotein (P = 4.73 × 10-4 , LOD = 3.67), apolipoprotein B (P = 1.39 × 10-3 , LOD = 4.64), and total cholesterol (P = 1.35 × 10-2 , LOD = 3.80) levels. rs201606363 is an intronic variant of the UBE2F-SCLY (where UBE2F is ubiquitin-conjugating enzyme E2F and SCLY is selenocysteine lyase) fusion gene that may regulate cholesterol through selenium metabolism. In conclusion, these results confirm the feasibility of imputing INDELs from array-based single nucleotide polymorphism (SNP) genotypes. Analysis of these variants using association and linkage replicated previously identified SNP signals and identified multiple novel INDEL signals. These results support the inclusion of INDELs into genetic studies to more fully interrogate the spectrum of genetic variation.


Assuntos
Aterosclerose/genética , Ligação Genética , Estudo de Associação Genômica Ampla , Mutação INDEL/genética , Resistência à Insulina/genética , Americanos Mexicanos/genética , Adulto , Demografia , Família , Feminino , Frequência do Gene/genética , Genoma Humano , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...