Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262629

RESUMO

The mitochondrial outer membrane (MOM) harbors proteins that traverse the membrane via several helical segments and are called multi-span proteins. To obtain new insights into the biogenesis of these proteins, we utilized yeast mitochondria and the multi-span protein Om14. Testing different truncation variants, we show that while only the full-length protein contains all the information that assures perfect targeting specificity, shorter variants are targeted to mitochondria with compromised fidelity. Employing a specific insertion assay and various deletion strains, we show that proteins exposed to the cytosol do not contribute significantly to the biogenesis process. We further demonstrate that Mim1 and Porin support optimal membrane integration of Om14 but none of them are absolutely required. Unfolding of newly synthesized Om14, its optimal hydrophobicity, and higher fluidity of the membrane enhanced the import capacity of Om14. Collectively, these findings suggest that MOM multi-span proteins follow different biogenesis pathways in which proteinaceous elements and membrane behavior contribute to a variable extent to the combined efficiency.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
PLoS One ; 15(8): e0237982, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817700

RESUMO

Some organisms, like Trichomonas vaginalis, contain mitochondria-related hydrogen-producing organelles, called hydrogenosomes. The protein targeting into these organelles is proposed to be similar to the well-studied mitochondria import. Indeed, S. cerevisiae mitochondria and T. vaginalis hydrogenosomes share some components of protein import complexes. However, it is still unknown whether targeting signals directing substrate proteins to hydrogenosomes can support in other eukaryotes specific mitochondrial localization. To address this issue, we investigated the intracellular localization of three hydrogenosomal tail-anchored proteins expressed in yeast cells. We observed that these proteins were targeted to both mitochondria and ER with a variable dependency on the mitochondrial MIM complex. Our results suggest that the targeting signal of TA proteins are only partially conserved between hydrogenosomes and yeast mitochondria.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Trichomonas vaginalis/citologia , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo
3.
FEBS Lett ; 592(19): 3210-3220, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30192984

RESUMO

Mitochondria are organelles containing two membranes that are distinct in composition and function. A role of the mitochondrial outer membrane (MOM) is to mediate contact of the organelle with the rest of the cell. In yeast, the MOM contains about 40 different integral proteins. Recently, we described the MOM protein Mcp3, which can serve as a multicopy suppressor of loss of ERMES complex that mediates mitochondria-endoplasmic reticulum contacts. To shed further light on the role of Mcp3 in the MOM, we analyzed its physical interaction with other proteins. We show that Mcp3 interacts with the MOM protein Om45 and the inner membrane protein Aim19. Our observations hint toward a potential involvement of Mcp3 in a structural and/or functional link between both mitochondrial membranes.


Assuntos
Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Mutação , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Elife ; 72018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29923829

RESUMO

Assembly and/or insertion of a subset of mitochondrial outer membrane (MOM) proteins, including subunits of the main MOM translocase, require the fungi-specific Mim1/Mim2 complex. So far it was unclear which proteins accomplish this task in other eukaryotes. Here, we show by reciprocal complementation that the MOM protein pATOM36 of trypanosomes is a functional analogue of yeast Mim1/Mim2 complex, even though these proteins show neither sequence nor topological similarity. Expression of pATOM36 rescues almost all growth, mitochondrial biogenesis, and morphology defects in yeast cells lacking Mim1 and/or Mim2. Conversely, co-expression of Mim1 and Mim2 restores the assembly and/or insertion defects of MOM proteins in trypanosomes ablated for pATOM36. Mim1/Mim2 and pATOM36 form native-like complexes when heterologously expressed, indicating that additional proteins are not part of these structures. Our findings indicate that Mim1/Mim2 and pATOM36 are the products of convergent evolution and arose only after the ancestors of fungi and trypanosomatids diverged.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Proteínas de Protozoários/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Trypanosoma brucei brucei/genética , Coevolução Biológica , Deleção de Genes , Teste de Complementação Genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Biogênese de Organelas , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/metabolismo
5.
J Cell Sci ; 125(Pt 14): 3464-73, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22467864

RESUMO

Most of the mitochondrial outer membrane (MOM) proteins contain helical transmembrane domains. Some of the single-span proteins and all known multiple-span proteins are inserted into the membrane in a pathway that depends on the MOM protein Mitochondrial Import 1 (Mim1). So far it has been unknown whether additional proteins are required for this process. Here, we describe the identification and characterization of Mim2, a novel protein of the MOM that has a crucial role in the biogenesis of MOM helical proteins. Mim2 physically and genetically interacts with Mim1, and both proteins form the MIM complex. Cells lacking Mim2 exhibit a severely reduced growth rate and lower steady-state levels of helical MOM proteins. In addition, absence of Mim2 leads to compromised assembly of the translocase of the outer mitochondrial membrane (TOM complex), hampered mitochondrial protein import, and defects in mitochondrial morphology. In summary, the current study demonstrates that Mim2 is a novel central player in the biogenesis of MOM proteins.


Assuntos
Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
J Cell Biol ; 194(3): 397-405, 2011 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21825074

RESUMO

The mitochondrial outer membrane (MOM) harbors several multispan proteins that execute various functions. Despite their importance, the mechanisms by which these proteins are recognized and inserted into the outer membrane remain largely unclear. In this paper, we address this issue using yeast mitochondria and the multispan protein Ugo1. Using a specific insertion assay and analysis by native gel electrophoresis, we show that the import receptor Tom70, but not its partner Tom20, is involved in the initial recognition of the Ugo1 precursor. Surprisingly, the import pore formed by the translocase of the outer membrane complex appears not to be required for the insertion process. Conversely, the multifunctional outer membrane protein mitochondrial import 1 (Mim1) plays a central role in mediating the insertion of Ugo1. Collectively, these results suggest that Ugo1 is inserted into the MOM by a novel pathway in which Tom70 and Mim1 contribute to the efficiency and selectivity of the process.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Ligação Proteica , Transporte Proteico
7.
Mol Biol Cell ; 22(10): 1638-47, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21460184

RESUMO

ß-barrel proteins are found in the outer membranes of eukaryotic organelles of endosymbiotic origin as well as in the outer membrane of Gram-negative bacteria. Precursors of mitochondrial ß-barrel proteins are synthesized in the cytosol and have to be targeted to the organelle. Currently, the signal that assures their specific targeting to mitochondria is poorly defined. To characterize the structural features needed for specific mitochondrial targeting and to test whether a full ß-barrel structure is required, we expressed in yeast cells the ß-barrel domain of the trimeric autotransporter Yersinia adhesin A (YadA). Trimeric autotransporters are found only in prokaryotes, where they are anchored to the outer membrane by a single 12-stranded ß-barrel structure to which each monomer is contributing four ß-strands. Importantly, we found that YadA is solely localized to the mitochondrial outer membrane, where it exists in a native trimeric conformation. These findings demonstrate that, rather than a linear sequence or a complete ß-barrel structure, four ß-strands are sufficient for the mitochondria to recognize and assemble a ß-barrel protein. Remarkably, the evolutionary origin of mitochondria from bacteria enables them to import and assemble even proteins belonging to a class that is absent in eukaryotes.


Assuntos
Adesinas Bacterianas/biossíntese , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fragmentos de Peptídeos/biossíntese , Proteínas Recombinantes/biossíntese , Adesinas Bacterianas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Multimerização Proteica , Sinais Direcionadores de Proteínas , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae
8.
EMBO Rep ; 11(11): 854-60, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20930847

RESUMO

Trichoplein/mitostatin (TpMs) is a keratin-binding protein that partly colocalizes with mitochondria and is often downregulated in epithelial cancers, but its function remains unclear. In this study, we report that TpMs regulates the tethering between mitochondria and endoplasmic reticulum (ER) in a Mitofusin 2 (Mfn2)-dependent manner. Subcellular fractionation and immunostaining show that TpMs is present at the interface between mitochondria and ER. The expression of TpMs leads to mitochondrial fragmentation and loosens tethering with ER, whereas its silencing has opposite effects. Functionally, the reduced tethering by TpMs inhibits apoptosis by Ca(2+)-dependent stimuli that require ER-mitochondria juxtaposition. Biochemical and genetic evidence support a model in which TpMs requires Mfn2 to modulate mitochondrial shape and tethering. Thus, TpMs is a new regulator of mitochondria-ER juxtaposition.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Cálcio/farmacologia , Morte Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Forma das Organelas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
9.
Mol Cell Biol ; 29(22): 5975-88, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19797086

RESUMO

The TOM complex is the general mitochondrial entry site for newly synthesized proteins. Precursors of beta-barrel proteins initially follow this common pathway and are then relayed to the SAM/TOB complex, which mediates their integration into the outer membrane. Three proteins, Sam50 (Tob55), Sam35 (Tob38/Tom38), and Sam37 (Mas37), have been identified as the core constituents of the latter complex. Sam37 is essential for growth at elevated temperatures, but the function of the protein is currently unresolved. To identify interacting partners of Sam37 and thus shed light on its function, we screened for multicopy suppressors of sam37Delta. We identified the small subunit of the TOM complex, Tom6, as such a suppressor and found a tight genetic interaction between the two proteins. Overexpression of SAM37 suppresses the growth phenotype of tom6Delta, and cells lacking both genes are not viable. The ability of large amounts of Tom6 to suppress the sam37Delta phenotype can be linked to the capacity of Tom6 to stabilize Tom40, an essential beta-barrel protein which is the central component of the TOM complex. Our results suggest that Sam37 is required for growth at higher temperatures, since it enhances the biogenesis of Tom40, and this requirement can be overruled by improved stability of newly synthesized Tom40 molecules.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proliferação de Células , Deleção de Genes , Dosagem de Genes , Genes Supressores , Viabilidade Microbiana , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação/genética , Fenótipo , Plasmídeos/genética , Ligação Proteica , Precursores de Proteínas/metabolismo , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
10.
J Cell Sci ; 121(Pt 12): 1990-8, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18495843

RESUMO

Tail-anchored proteins form a distinct class of membrane proteins that are found in all intracellular membranes exposed to the cytosol. These proteins have a single membrane insertion sequence at their C-terminus and display a large N-terminal portion to the cytosol. Despite their importance for various cellular processes, the mechanisms by which these proteins are recognized at and inserted into their corresponding target membrane remained largely unclear. Here we address this issue and investigate the biogenesis of tail-anchored proteins residing in the mitochondrial outer membrane. To that goal we developed a highly specific assay to monitor the membrane insertion of the model tail-anchored protein Fis1. Using this assay, we show that in contrast to all other import pathways in yeast mitochondria, none of the import components at the outer membrane is involved in the insertion process of Fis1. Both the steady-state levels of Fis1 and its in vitro insertion into isolated mitochondria were unaffected when mitochondria mutated in known import factors were analyzed. Fis1 was inserted into lipid vesicles, and importantly, elevated ergosterol contents in these vesicles inhibited this insertion. Collectively, these results suggest that Fis1 is inserted into mitochondria in a novel pathway where the unique lipid composition of the mitochondrial outer membrane contributes to the selectivity of the process. Thus, this work demonstrates a novel role for lipids in the biogenesis of mitochondrial protein.


Assuntos
Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Bioensaio , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sistema Livre de Células , Ergosterol/farmacologia , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Coelhos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...