Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 239(1): e14024, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37551144

RESUMO

AIMS: Motor unit recruitment and firing rate patterns of the vastus lateralis (VL) have not been compared between sexes during moderate- and high-intensity contraction intensities. Additionally, the influence of fiber composition on potential sex-related differences remains unquantified. METHODS: Eleven males and 11 females performed 40% and 70% maximal voluntary contractions (MVCs). Surface electromyographic (EMG) signals recorded from the VL were decomposed. Recruitment thresholds (RTs), MU action potential amplitudes (MUAPAMP ), initial firing rates (IFRs), mean firing rates (MFRs), and normalized EMG amplitude (N-EMGRMS ) at steady torque were analyzed. Y-intercepts and slopes were calculated for MUAPAMP , IFR, and MFR versus RT relationships. Type I myosin heavy chain isoform (MHC) was determined with muscle biopsies. RESULTS: There were no sex-related differences in MU characteristics at 40% MVC. At 70% MVC, males exhibited greater slopes (p = 0.002) for the MUAPAMP , whereas females displayed greater slopes (p = 0.001-0.007) for the IFR and MFR versus RT relationships. N-EMGRMS at 70% MVC was greater for females (p < 0.001). Type I %MHC was greater for females (p = 0.006), and was correlated (p = 0.018-0.031) with the slopes for the MUAPAMP , IFR, and MFR versus RT relationships at 70% MVC (r = -0.599-0.585). CONCLUSION: Both sexes exhibited an inverse relationship between MU firing rates and recruitment thresholds. However, the sex-related differences in MU recruitment and firing rate patterns and N-EMGRMS at 70% MVC were likely due to greater type I% MHC and smaller twitch forces of the higher threshold MUs for the females. Evidence is provided that muscle fiber composition may explain divergent MU behavior between sexes.


Assuntos
Músculo Esquelético , Cadeias Pesadas de Miosina , Masculino , Feminino , Humanos , Músculo Esquelético/fisiologia , Contração Isométrica/fisiologia , Músculo Quadríceps/fisiologia , Fibras Musculares Esqueléticas , Potenciais de Ação/fisiologia , Recrutamento Neurofisiológico/fisiologia , Eletromiografia
2.
Res Q Exerc Sport ; : 1-12, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369135

RESUMO

Purpose: To examine the effects of a 5-week continuous cycling training intervention on electromyographic amplitude (EMGRMS)- and mechanomyographic amplitude (MMGRMS)-torque relationships of the vastus lateralis (VL) during a prolonged contraction. Methods: Twenty-four sedentary, young adults performed maximal voluntary contractions (MVCs) and a prolonged isometric trapezoidal contraction at the same absolute 40% MVC for the knee extensors before (PRE) and after training (POSTABS). Individual b- (slopes) and a-terms (y-intercepts) were calculated from the log-transformed electromyographic amplitude (EMGRMS)- and mechanomyographic amplitude (MMGRMS)-torque relationships during the increasing and decreasing segments of the trapezoid. EMGRMS and MMGRMS was normalized for the 45-s steady torque segment. Results: At PRE, b-terms for the EMGRMS-torque relationships during the linearly decreasing segment were greater than the increasing segment (p < .001), and decreased from PRE to POSTABS (p = .027). a-terms were greater during the linearly increasing than decreasing segment at PRE, while the a-terms for the linearly decreasing segment increased from PRE to POSTABS (p = .027). For the MMGRMS-torque relationships, b-terms during the linearly decreasing segment decreased from PRE to POSTABS (p = .013), while a-terms increased from PRE to POSTABS when collapsed across segments (p = .022). Steady torque EMGRMS increased for POSTABS (p < .001). Conclusion: Although cycling training increased aerobic endurance, incorporating resistance training may benefit athletes/individuals as the alterations in neuromuscular parameters post-training suggest a greater neural cost (EMGRMS) and mechanical output (MMGRMS) to complete the same pre-training fatiguing contraction.

3.
Med Eng Phys ; 111: 103946, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36792240

RESUMO

This study examined relationships between percent myosin heavy chain (%MHC) expression and mechanomyographic amplitude (MMGRMS). Fifteen females (age ± SD=21.3 ± 5.3 yrs) completed isometric trapezoidal contractions at 30% and 70% maximal voluntary contraction (MVC). MMG was recorded from the vastus lateralis (VL). Participants gave a muscle biopsy of the VL post-testing. MMGRMS-torque relationships during the linearly varying segments were log-transformed and linear regressions were applied to calculate b terms (slopes). For the steady torque segment, MMGRMS was averaged. Correlations were performed for type I%MHC with the MMG variables. Multiple regression was utilized to examine prediction equations for type I%MHC. Type I%MHC was significantly correlated with the b terms during the increasing segment of the 70% MVC (p = 0.003; r = -0.718), and MMGRMS during steady torque at 30% (p = 0.008; r = -0.652) and 70% MVC (p = 0.040; r = -0.535). Type I%MHC reduced the linearity of the MMGRMS-torque relationship during the high-intensity linearly increasing segment, and MMGRMS at a low- and high-intensity steady torque. A combination of MMG variables estimated type I%MHC expression with 81.2% accuracy. MMG recorded during a low- and high-intensity isometric trapezoidal contraction may offer a simple, noninvasive test for estimating type I%MHC expression of the VL in sedentary females.


Assuntos
Cadeias Pesadas de Miosina , Músculo Quadríceps , Feminino , Humanos , Eletromiografia , Contração Isométrica/fisiologia , Modelos Lineares , Análise Multivariada , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Músculo Quadríceps/fisiologia , Torque , Adolescente , Adulto Jovem , Adulto
4.
Front Sports Act Living ; 5: 1283316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186400

RESUMO

Running biomechanics are affected by fatiguing or prolonged runs. However, no evidence to date has conclusively linked this effect to running-related injury (RRI) development or performance implications. Previous investigations using subject-specific models in running have demonstrated higher accuracy than group-based models, however, this has been infrequently applied to fatigue. In this study, two experiments were conducted to determine whether subject-specific models outperformed group-based models to classify running biomechanics during non-fatigued and fatigued conditions. In the first experiment, 16 participants performed four treadmill runs at or around the maximal lactate steady state. In the second experiment, nine participants performed five prolonged runs using commercial wearable devices. For each experiment, two segments were extracted from each trial from early and late in the run. For each participant, a random forest model was applied with a leave-one-run-out cross-validation to classify between the early (non-fatigued) and late (fatigued) segments. Additionally, group-based classifiers with a leave-one-subject-out cross validation were constructed. For experiment 1, mean classification accuracies for the single-subject and group-based classifiers were 68.2 ± 8.2% and 57.0 ± 8.9%, respectively. For experiment 2, mean classification accuracies for the single-subject and group-based classifiers were 68.9 ± 17.1% and 61.5 ± 11.7%, respectively. Variable importance rankings were consistent within participants, but these rankings differed from each participant to those of the group. Although the classification accuracies were relatively low, these findings highlight the advantage of subject-specific classifiers to detect changes in running biomechanics with fatigue and indicate the potential of using big data and wearable technology approaches in future research to determine possible connections between biomechanics and RRI.

5.
Sensors (Basel) ; 22(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684750

RESUMO

The purpose of this study was to determine if fatigue-related changes in biomechanics derived from an inertial measurement unit (IMU) placed at the center of mass (CoM) are reliable day-to-day. Sixteen runners performed two runs at maximal lactate steady state (MLSS) on a treadmill, one run 5% above MLSS speed, and one run 5% below MLSS speed while wearing a CoM-mounted IMU. Trials were performed to volitional exhaustion or a specified termination time. IMU features were derived from each axis and the resultant. Feature means were calculated for each subject during non-fatigued and fatigued states. Comparisons were performed between the two trials at MLSS and between all four trials. The only significant fatigue state × trial interaction was the 25th percentile of the results when comparing all trials. There were no main effects for trial for either comparison method. There were main effects for fatigue state for most features in both comparison methods. Reliability, measured by an intraclass coefficient (ICC), was good-to-excellent for most features. These results suggest that fatigue-related changes in biomechanics derived from a CoM-mounted IMU are reliable day-to-day when participants ran at or around MLSS and are not significantly affected by slight deviations in speed.


Assuntos
Teste de Esforço , Fadiga , Teste de Esforço/métodos , Humanos , Ácido Láctico , Reprodutibilidade dos Testes
6.
J Musculoskelet Neuronal Interact ; 22(1): 27-36, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234156

RESUMO

OBJECTIVE: This study examined motor unit (MU) firing rates during a prolonged isometric contraction of the vastus lateralis (VL) for females and males. METHODS: Surface electromyographic (sEMG) signals were recorded from the VL for eleven females and twelve males during a 45-second isometric trapezoid muscle actions at 40% of maximal voluntary contraction (MVC). For each MU, mean firing rate (MFR) was calculated for the initial and final 10-second epochs of the steady torque segment and regressed against recruitment threshold (RT, expressed as %MVC), as well as time at recruitment (TREC, seconds). MFR was also averaged for each subject. RESULTS: Significant differences existed across epochs for the y-intercepts (P=0.009) of the MFR vs. TREC relationship, as well as the grouped MFR analysis (P<0.001); no differences were observed between epochs for the MFR vs. RT relationship. Significant differences existed between sexes for the grouped MFR analysis (P=0.049), but no differences were observed for the MFR vs. TREC or MFR vs. RT relationships. CONCLUSION: Analysis method may impact interpretation of firing rate behavior; increases in MU firing rates across a prolonged isometric contraction were observed in the MFR vs. TREC relationship and the grouped MFR analysis.


Assuntos
Contração Isométrica , Recrutamento Neurofisiológico , Potenciais de Ação/fisiologia , Eletromiografia , Feminino , Humanos , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico/fisiologia
7.
Exp Brain Res ; 240(3): 825-839, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35048160

RESUMO

This study examined the effects of continuous endurance training on motor unit (MU) mean firing rates (MFR), percent myosin heavy chain (%MHC) isoforms, and muscle cross-sectional area (mCSA) of the vastus lateralis (VL). Twelve females completed 5-weeks of continuous cycling-training (CYC), while 8 females were controls (CON). Participants performed maximal voluntary contractions (MVCs) and 40% MVCs of the knee extensors before (PRE) and after the 5-week treatment period at the same absolute pre-treatment submaximal torque (POSTABS) and relative to post-treatment MVCs (POSTREL). Surface electromyographic (EMG) signals were decomposed with the Precision Decomposition III algorithm. MU firing times and waveforms were validated with reconstruct-and-test and spike trigger average procedures. MFRs at steady torque, recruitment thresholds (RT), and normalized EMG amplitude (N-EMGRMS) were analyzed. Y-intercepts and slopes were calculated for the MFR vs. RT relationships. MHC isoforms and mCSA were determined with muscle biopsies and ultrasonography. CYC decreased MVCs and type IIX %MHC isoform without changes in mCSA. The slopes for the MFR vs. RT relationships decreased for CYC during POSTREL and POSTABS while N-EMGRMS increased for POSTABS with no differences between PRE and POSTREL. Type I %MHC isoform was correlated with the slope for the MFR vs. RT relationship during POSTABS and POSTREL for CYC. This study provides evidence that decreases in the MFRs of higher threshold MUs post-CYC is likely a function of changes in input excitation (POSTABS) and the firing frequency-excitation relationships (POSTREL). Evidence is provided that MHC isoforms influence the firing rate scheme of the muscle following short-term training.


Assuntos
Cadeias Pesadas de Miosina , Músculo Quadríceps , Potenciais de Ação/fisiologia , Eletromiografia , Feminino , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico/fisiologia , Torque
8.
Eur J Appl Physiol ; 121(5): 1367-1377, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33604695

RESUMO

PURPOSE: To examine the effects of 10 weeks of endurance cycling training on mechanomyographic amplitude (MMGRMS)-torque relationships and muscle cross-sectional area (mCSA) of the vastus lateralis (VL) for 10 sedentary males (Age ± SD; 20.2 ± 1.9 years) and 14 sedentary females (21.9 ± 5.3 years). METHODS: Participants performed maximal voluntary contractions (MVCs) and an isometric ramp up muscle action to 70% MVC of the knee extensors before (PRE) and after training at the same absolute pre-treatment submaximal torque (POSTABS). MMG was recorded from the VL and b terms were calculated from the natural log-transformed MMGRMS-torque relationships for each subject. mCSA was determined with ultrasonography. RESULTS: Cycling decreased MVCs from pre- (168.10 ± 58.49 Nm) to post-training (160.78 ± 58.39 Nm; p = 0.005) without changes in mCSA. The b terms were greater for POSTABS (0.623 ± 0.204) than PRE (0.540 ± 0.226; p = 0.012) and for males (0.717 ± 0.171) than females (0.484 ± 0.168; p = 0.003). mCSA was correlated with the b terms for PRE (p < 0.001, r = 0.674) and POSTABS (p = 0.020, r = 0.471). CONCLUSION: The decrease in MVC and increase in MMGRMS (b terms) post-training suggests increased motor unit (MU) recruitment to match pre-training torques. The greater acceleration in the b terms by males may reflect sex-related differences in fiber-type area. MMGRMS-torque relationships during a high-intensity contraction provided insight on MU activation strategies following endurance training and between sexes. Furthermore, the findings suggest a relationship between MMGRMS and muscle size.


Assuntos
Treino Aeróbico , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico/fisiologia , Ciclismo/fisiologia , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Comportamento Sedentário , Fatores Sexuais , Torque , Ultrassonografia , Adulto Jovem
9.
Hum Mov Sci ; 72: 102650, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32721368

RESUMO

Motor unit (MU) firing rates of the vastus lateralis in children and adults were examined. Seven healthy adult males (mean ± SD, age = 21 ± 2.6 yrs) and six healthy male children (mean ± SD age = 8.8 ± 1.7) volunteered. Surface electromyography (EMG) signals were recorded from 20% and 60% maximal voluntary contractions (MVC). Surface EMG signals were decomposed into firing events of individual MUs and slopes and y-intercepts were calculated for the mean firing rate (MFR, pps) at steady torque vs. recruitment thresholds (RT) relationships for each subject. Muscle cross-sectional area (mCSA) was measured, via ultrasonography, with specific torque calculated (MVC/mCSA). Adults possessed greater mCSA (p = .002; children = 11.5 ± 2.1 cm2; adults = 31.80 ± 12.15 cm2) and greater specific torque (p = .018; children = 4.63 ± 1.4 Nm/cm2; adults = 7.1 ± 1.8 Nm/cm2) compared to children. The y-intercepts were significantly (p < .001) greater during the 60% (28.91 ± 4.56 pps) than the 20% MVC (23.5 ± 4.9 pps) collapsed across groups while the children had significantly (p = .036) lower y-intercepts (23.9 ± 5.4 pps) than the adults (28.2 ± 4.8 pps) when collapsed across intensities. Slopes of the MFR vs RT relationships were greater for the 60% (-0.342 ± 0.127 pps/%MVC) contraction than the 20% (-0.50 ± 0.159 pps/%MVC) MVC when collapsed across groups. Adults had greater firing rates regardless of recruitment threshold than children. This may be due to lower recruitment potential and overall excitation to the motoneuron pool of children as indicated with differences in specific torque and/or differences in antagonist co-activation.


Assuntos
Contração Isométrica , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico , Potenciais de Ação , Adulto , Fatores Etários , Criança , Eletromiografia , Feminino , Humanos , Modelos Lineares , Locomoção , Masculino , Neurônios Motores/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Torque , Ultrassonografia , Adulto Jovem
10.
Exp Brain Res ; 238(5): 1133-1144, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32232542

RESUMO

Despite ample evidence that females are weaker and possess smaller muscle cross-sectional areas (CSAs) compared to males, it remains unclear if there are sex-related differences in the properties of motor units (MU). Eleven males (age 22 ± 3 years) and 12 females (age 21 ± 1 years) performed isometric trapezoid muscle actions at 10% and 70% of maximal voluntary contraction (MVC). Surface electromyography signals were recorded and decomposed into MU action potential (AP) waveforms and firing instances. Average MUAP amplitudes (MUAPAMPS), mean firing rates (MFRs), initial firing rates (IFRs), and recruitment thresholds (RT) were calculated for the 10% MVC, while MUAPAMPS, IFRs, and MFRs were regressed against RT for the 70% MVC. Ultrasonography was used to measure CSA of the first dorsal interosseous (FDI). Males had greater CSAs (p < 0.001; males 2.34 ± 0.28 cm2, females 1.82 ± 0.18 cm2) and MVC strength (p < 0.001; males 25.9 ± 5.5 N, females 16.44 ± 2.5 N). No differences existed for MUAPAMPS, IFRs, MFRs, or RTs (p > 0.05) during the 10% MVC. For the 70% MVC, the y-intercepts from the MUAPAMPS vs. RT relationships were greater (p < 0.05) for the males (males - 0.19 ± 0.53 mV; females - 0.78 ± 0.75 mV), while the inverse was true for the MFR vs. RT relationships (males 31.55 ± 6.92 pps, females 38.65 ± 6.71 pps) with no differences (p > 0.05) in the slopes. Therefore, smaller CSAs and weaker MVCs are likely the result of smaller higher-threshold MUs for females.


Assuntos
Potenciais de Ação/fisiologia , Atividade Motora/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Caracteres Sexuais , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Fatores Sexuais , Ultrassonografia , Adulto Jovem
11.
Eur J Appl Physiol ; 120(1): 281-294, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31832754

RESUMO

PURPOSE: Previous investigations analyzing resistance training's influence on motor unit (MU) firing rates have yielded mixed results. These mixed results may be clarified by concurrently measuring changes in MU size. Thus, this study analyzed whether post-training strength gains were due to increases in MU firing rates and/or sizes as measured indirectly via action potential amplitudes. METHODS: Sixteen males (age = 20.7 ± 1.9 years) completed 8 weeks of resistance training, while eight males (age = 19.4 ± 2.5 years) served as controls. Vastus lateralis surface electromyography signals collected during submaximal isometric knee extensions were decomposed to yield an action potential amplitude (MUAPAMP), mean firing rate (MFR), and recruitment threshold (RT) for each MU. Each contraction's average MFR and MUAPAMP, and coefficients of the linear (y-intercept and slope) MUAPAMP-RT, linear MFR-RT and exponential (A and B terms) MFR-MUAPAMP relationships were analyzed. Firing instances and action potentials were validated via reconstruct-and-test and spike-triggered averaging procedures. Vastus lateralis cross-sectional area (CSA) was analyzed with ultrasonography. RESULTS: Resistance training increased isometric strength from 204.6 ± 34.9 to 239.8 ± 36.3 Nm and vastus lateralis CSA from 28.7 ± 4.7 to 34.0 ± 5.0 cm2. Resistance training did not affect MFR-RT relationship parameters or average MFRs but did increase the slopes of the MUAPAMP-RT relationships (0.0067 ± 0.0041 to 0.0097 ± 0.0045 mV/%MVC) and average MUAPAMPs from 0.189 ± 0.093 to 0.249 ± 0.127 mV. MU hypertrophy altered the MFR-MUAPAMP relationships (B terms: - 3.63 ± 1.40 to - 2.66 ± 1.38 pps/mV). CONCLUSION: Resistance training induced MU and muscle hypertrophy, but did not alter firing rates. Greater MU twitch forces resulting from larger MUs firing at pre-training rates likely explain resistance training strength gains.


Assuntos
Potencial Evocado Motor , Contração Isométrica , Força Muscular , Músculo Quadríceps/fisiologia , Treinamento Resistido/métodos , Humanos , Masculino , Músculo Quadríceps/diagnóstico por imagem , Treinamento Resistido/efeitos adversos , Ultrassonografia , Adulto Jovem
12.
Hum Mov Sci ; 66: 416-424, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31174016

RESUMO

The purpose of this study was to examine possible differences in motor unit action potential amplitudes (MUAPAMPS) and firing rates of the first dorsal interosseous (FDI) in male and female children aged 8-10 years. Eight male (mean ±â€¯SD, age = 8.8 ±â€¯0.7 yrs; BMI = 16.5 ±â€¯1.3 kg/m2) and eight female (age = 9.3 ±â€¯0.9 yrs; BMI = 16.1 ±â€¯1.5 kg/m2) children volunteered to complete isometric trapezoidal muscle actions of the first dorsal interosseous at 50% of maximal voluntary contraction (MVC). Electromyographic signals were decomposed to yield MUAPAMPS and mean firing rates (MFR) at the targeted force. An exponential model was fitted to the MUAPAMPS vs. recruitment threshold (RT) while linear models were fitted to the MFRs vs. RT relationships for each subject. Ultrasonography determined the muscle cross-sectional area (CSA) of the FDI. Independent samples t-tests were used to examine possible differences between the male and female children for MVC strength, CSA, and the coefficients from the MU relationships. There were no differences in MVC strength, CSA, or the MUAPAMP vs. RT relationships between the male and female children (P < 0.05). Males, however, had greater MFRs of lower-threshold MUs as evident by significantly larger y-intercepts (P = 0.019) and more negative slopes (P = 0.004) from the MFR vs. RT relationships. Despite no differences in muscle strength, CSA, and MUAPAMPS, differences in firing rates existed between male and female children aged 8-10 years. Neural mechanisms may primarily contribute to sex-related differences in firing rates.

13.
J Biomech ; 86: 251-255, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30795842

RESUMO

It remains unclear if the sizes of higher-threshold motor units (MU) are associated with muscular strength and power. Therefore, the purpose of this study was to examine sex-related differences in muscle cross-sectional area (mCSA), percent myosin heavy chain (%MHC) isoform expression, and the MU action potential amplitudes (MUAPAMPS)-recruitment threshold (RT) relationships of the vastus lateralis and isometric peak torque, isokinetic peak torque and mean power at 1.05 rad·s-1 of the leg extensors. Surface electromyographic decomposition techniques were used to quantify MUAPAMPS recorded during isometric muscle actions at 70% of maximal voluntary contractions and regressed against RTs with the slopes calculated. Ultrasound images were used to measure mCSA. Males had greater slopes from the MUAPAMP-RT relationship than the females (P < 0.05). The greater slopes likely reflected larger higher-threshold MUs for the males. The mCSAs and slopes from the relationships were strongly correlated with isometric and isokinetic peak torque and isokinetic mean power (r = 0.78-0.82), however, type I %MHC isoform was only moderately correlated with isometric peak torque (r = -0.54). The results indicated that sex-related differences in muscular strength and power were associated more so with the sizes of the higher-threshold MUs (slopes) and mCSA than MHC isoforms. The amount of cross-bridge activity within muscle fibers that comprise higher-threshold MUs may be the primary contributor to muscular strength and power rather than the contractile properties of the muscle.


Assuntos
Potenciais de Ação/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Comportamento Sedentário , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/diagnóstico por imagem , Isoformas de Proteínas , Músculo Quadríceps/fisiologia , Fatores Sexuais , Torque , Ultrassonografia
14.
Eur J Appl Physiol ; 119(4): 1007-1018, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30771058

RESUMO

PURPOSE: Previous research has indicated greater muscle activation is needed for children (CH) to match relative intensity submaximal contractions in comparison with adults (AD). However, no study has compared motor unit (MU) firing and recruitment patterns between children and adults. Therefore, MU action potential amplitudes (MUAPAMP) and firing rates were examined during two repetitive submaximal contractions of the first dorsal interosseous in children and adults. METHODS: Twenty-two children (age 9.0 ± 0.8 years) and 13 adults (age 22.9 ± 4.8 years) completed three maximum voluntary contractions (MVC) and two repetitive isometric contractions at 30% MVC for 40 s. Surface electromyography (EMG) was recorded and decomposed into action potential trains. MUAPAMPS, recruitment thresholds (RTs), and mean firing rates (MFRs) were calculated, and EMG amplitude was normalized (N-EMG) to MVC. For each subject and repetition, linear MFR vs. RT and exponential MUAPAMP vs. RT and MFR vs. MUAPAMP relationships were calculated. RESULTS: N-EMG (P = 0.001, CH = 56.5 ± 31.7%, AD = 30.3 ± 9.1%), MFRs regardless of RT, according to greater y-intercepts of the MFR vs. RT relationships [P = 0.013, CH = 31.1 ± 5.1 pulses per second (pps), AD = 25.9 ± 4.3 pps] and MFRs of MUs with smaller action potential amplitudes (P = 0.017, CH = 29.4 ± 6.8 pps, AD = 23.5 ± 3.5 pps), were greater for children. MUAPAMPS in relation with RT were similar between groups except the highest threshold MUs (RT = 28% MVC) were greater for the adults (1.02 ± 0.43 mV) than children (0.67 ± 0.24 mV) (P = 0.010). CONCLUSIONS: Muscle activation and MU firing rates were greater for children, which likely indicated a greater operating point of MU control in comparison with adults during an isometric contraction performed at a relative submaximal intensity.


Assuntos
Potenciais de Ação/fisiologia , Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico/fisiologia , Adulto Jovem
15.
Eur J Appl Physiol ; 118(9): 1789-1800, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948198

RESUMO

This study examined motor unit (MU) amplitudes (APAMPS) and firing rates during moderate-intensity contractions and muscle cross-sectional area (mCSA) and echo intensity (mEI) of the vastus lateralis (VL) in chronically endurance-trained and sedentary females. Eight endurance-trained (ET) and nine sedentary controls (SED) volunteered for this study. Surface electromyographic (EMG) signals from a five-pin electrode array were recorded from the VL during isometric trapezoid muscle actions at 40% of maximal voluntary contraction (MVC). Decomposition methods were applied to the EMG signals to extract the firing events and amplitudes of single MUs. The mean firing rate (MFR) during steady force and MUAPAMP for each MU was regressed against recruitment threshold (RT, expressed as %MVC). The y-intercepts and slopes from the MFR and MUAPAMP vs. RT relationships were calculated. EMG amplitude during steady force was normalized (N-EMGRMS) to peak EMG amplitude recorded during the MVC. Ultrasonography was used to measure mCSA and mEI. Significant differences existed between the ET and SED for the slopes (P = 0.005, P = 0.001) from the MFR and MUAPAMP vs. RT relationships with no differences for the y-intercepts (P > 0.05). N-EMGRMS was significantly (P = 0.033) lower for the ET than SED. There were no differences between groups for mCSA; however, the SED possessed significantly (P = 0.001) greater mEI. Subsequently, the ET likely possessed hypertrophied and stronger MUs that allowed for lower necessary muscle activation to maintain the same relative task as the SED. The larger MUs for the ET is supported via the MFR vs. RT relationships and ultrasound data.


Assuntos
Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Potenciais de Ação/fisiologia , Adulto , Eletromiografia/métodos , Feminino , Humanos , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico/fisiologia , Treinamento Resistido , Adulto Jovem
16.
Appl Physiol Nutr Metab ; 43(8): 759-768, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29481763

RESUMO

Previous investigations report no changes in motor unit (MU) firing rates during submaximal contractions following resistance training. These investigations did not account for MU recruitment or examine firing rates as a function of recruitment threshold (REC). Therefore, MU recruitment and firing rates in chronically resistance-trained (RT) and physically active controls (CON) were examined. Surface electromyography signals were collected from the first dorsal interosseous during isometric muscle actions at 40% and 70% maximal voluntary contraction (MVC). For each MU, force at REC, mean firing rate (MFR) during the steady force, and MU action potential amplitude (MUAPAMP) were analyzed. For each individual and contraction, the MFRs were linearly regressed against REC, whereas, exponential models were applied to the MFR versus MUAPAMP and MUAPAMP versus REC relationships with the y-intercepts and slopes (linear) and A and B terms (exponential) calculated. For the 40% MVC, the RT had less negative slopes (p = 0.001) and lower y-intercepts (p = 0.006) of the MFR versus REC relationships and lower B terms (p = 0.011) of the MUAPAMP versus REC relationships. There were no differences in either relationship between groups for the 70% MVC. During the 40% MVC, the RT had a smaller range of MFRs and MUAPAMPS in comparison with the CON, likely because of reduced MU recruitment. The RT had lower MFRs and recruitment during the 40% MVC, which may indicate a leftward shift in the force-frequency relationship, and thus require less excitation to the motoneuron pool to match the same relative force.


Assuntos
Potenciais de Ação , Músculos do Dorso/inervação , Contração Isométrica , Aptidão Física , Recrutamento Neurofisiológico , Treinamento Resistido , Adaptação Fisiológica , Adulto , Músculos do Dorso/diagnóstico por imagem , Eletromiografia , Humanos , Hipertrofia , Masculino , Fadiga Muscular , Força Muscular , Fatores de Tempo , Ultrassonografia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...