Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39057889

RESUMO

We report a two-step growth process of MoS2 nanoflakes using a low-pressure chemical vapor deposition technique. In the first step, a MoS2 layer was synthesized on a c-plane sapphire substrate. This layer was subsequently re-evaporated at a higher temperature to form mono- or few-layer MoS2 flakes. As a result, the close proximity re-evaporation enabled the growth of pristine MoS2 nanoflakes. Atomic force microscopy analysis confirmed the synthesis of nanoclusters/nanoflakes with lateral dimensions of over 10 µm and a flake height of approximately 1.3 nm, demonstrating bi-layer MoS2, whereas transmission electron microscopy analysis revealed triangular MoS2 nanoflakes, with a diffraction pattern proving the presence of single crystalline hexagonal MoS2. Raman data revealed the typical modes of high-quality MoS2 nanoflakes. Finally, we presented the photocurrent dependence of a MoS2-based photoresist under illumination with light-emitting diode of 405 nm wavelength. The measured current-voltage dependence across various luminous flux outlined the sensitivity of MoS2 to polarized light and thus opens further opportunities for applications in high-performance photodetectors with polarization sensitivity.

2.
Inorg Chem ; 63(30): 13840-13864, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38996195

RESUMO

The photophysical properties of two isostructural heteroligand lanthanide complexes of general formula Ln(pdtc)3(phen) (pdtc = pyrrolidinedithiocarbamate anion, phen = 1,10-phenanthroline), Ln = Sm3+ (1), Eu3+ (2)) were studied in solid state and dichloromethane (DCM) solution. The two lanthanide complexes were investigated by experimental techniques for structural (single-crystal X-ray diffraction analysis of 1, powder XRD, TG-DTA) and spectroscopic [electron paramagnetic resonance (EPR), infrared (IR), ultraviolet-visible (UV-vis), photoluminescence (PL)] characterization. DFT/TDDFT/ωB97xD and multireference SA-CASSCF/NEVPT2 calculations with perturbative spin-orbit coupling corrections were applied to construct the Jablonski energy diagrams and to discuss the excited state energy transfer mechanism with competing excited state processes and possible sensitized mechanism of metal-centered emission. The first excited state (S1) involved in the excited state energy transfer L(antenna)-to-Ln was predicted to have interligand (pdtc-to-phen) charge transfer character in contrast to the previously predicted ligand-to-metal charge transfer character. The theoretical consideration showed similar relaxation paths and luminescence quenching channels and appropriate Donor*(phen)-Acceptor*(Ln3+) energy gap for 1 and 2. The experimental measurements in the solid state, however, showed efficient luminescence and good ability to convert UV to visible light only for the Sm(pdtc)3(phen) complex. The minor emission of 2 was explained by partial reduction of Eu3+, confirmed by EPR and calculated electron density distribution data.

3.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885868

RESUMO

New antenna ligand, 2-(phenylethynyl)-1,10-phenanthroline (PEP), and its luminescent Eu (III) complexes, Eu(PEP)2Cl3 and Eu(PEP)2(NO3)3, are synthesized and characterized. The synthetic procedure applied is based on reacting of europium salts with ligand in hot acetonitrile solutions in molar ratio 1 to 2. The structure of the complexes is refined by X-ray diffraction based on the single crystals obtained. The compounds [Eu(PEP)2Cl3]·2CH3CN and [Eu(PEP)2(NO3)3]∙2CH3CN crystalize in monoclinic space group P21/n and P21/c, respectively, with two acetonitrile solvent molecules. Intra- and inter-ligand π-π stacking interactions are present in solid stat and are realized between the phenanthroline moieties, as well as between the substituents and the phenanthroline units. The optical properties of the complexes are investigated in solid state, acetonitrile and dichloromethane solution. Both compounds exhibit bright red luminescence caused by the organic ligand acting as antenna for sensitization of Eu (III) emission. The newly designed complexes differ in counter ions in the inner coordination sphere, which allows exploring their influence on the stability, molecular and supramolecular structure, fluorescent properties and symmetry of the Eu (III) ion. In addition, molecular simulations are performed in order to explain the observed experimental behavior of the complexes. The discovered structure-properties relationships give insight on the role of the counter ions in the molecular design of new Eu (III) based luminescent materials.

4.
Photochem Photobiol Sci ; 20(5): 687-697, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34009634

RESUMO

The photoinduced birefringence of two 4-substituted phthalimide 2-hydroxy Schiff bases, containing salicylic (4) and 2-hydroxy-1-naphthyl (5) moieties has been investigated in PMMA matrix. Their optical behaviour as nanocomposite films was revealed by combined use of DFT quantum chemical calculations (in ground and excited state) and experimental optical spectroscopy (UV-Vis and fluorescence). The results have shown that solid-state reversible switching takes place by enol/keto tautomerization and Z/E isomerization. Birefringence study was performed in the PMMA nanocomposite films using pump lasers at λrec = 355 nm and λrec = 442 nm. Fast response time and high stability of anisotropy up to 58% for (4) and 95% for (5) after turning off the excitation laser, was observed, which makes these materials appropriate candidates for cutting-edge optical information technology materials. The possibility for multiple cycles of recording, reading and optical erasure of the photoinduced birefringence at λrec = 442 nm in 5 has been demonstrated. The obtained results have shown that the maximum value of the measured birefringence is close to the anisotropic characteristics of the most frequently used azo materials.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 210: 230-244, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30458391

RESUMO

This paper presents synthesis, photophysical characterization and quantum mechanical calculations of some N-phthalimide azo-azomethine dyes. The dyes were synthesized via azo coupling reaction between 2,4-substituted aromatic anilines and salicylic aldehyde followed by condensation reactions between azo dyes and N-aminophtalimide. Quantum chemical calculations to optimise the molecular geometry and to determine the electron densities of the trans (E) imine ⇌ enamine and the cis (Z) imine ⇌ enamine isomers and their vibrational frequencies have been computed by using DFT at B3LYP/6-31 + G(d,p) level of theory in vacuo. The effect of the used DMF solvent on the molecular structure and bond energies has been determined by using the IEFPCM model. Thermodynamic parameters such as total electronic energy E(RB3LYP), enthalpy H298 (sum of electronic and thermal enthalpies), free Gibbs energy G298 (sum of electronic and thermal free Gibbs energies) and dipole moment µ were computed in order to estimate the ΔE, Δµ, ΔH, ΔG and ΔS values. The NBO analysis was performed in order to understand the intramolecular charge transfer and the energy of resonance stabilization. After molecular geometry optimization, the electronic spectra were obtained by TD-DFT calculations at the above mentioned basis set using the IEFPCM model of DMF as a solvent. The solvatochromic effect of the dyes in four solvents with different polarity has been studied by UV-VIS spectroscopy and compared with the theoretically predicted. The coincidence between measured and calculated spectra is satisfactory. The dynamic photoisomerization experiments were performed in DMF under irradiation with UV light at λ = 365 nm (mostly E → Z) and with VIS light at λ = 400-800 nm (mostly Z → E). The spectra were recorded in the spectral region from 300 to 800 nm at identical sample concentrations of the three dyes and illumination times in order to investigate the photodynamical E → Z → E conversion of the NN chromophore group of the dyes as well as the imine ⇌ enamine tautomerization.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 263-274, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29156313

RESUMO

This paper describes the synthesis, spectroscopic characterization and quantum mechanical calculations of three azo-azomethine dyes. The dyes were synthesized via condensation reaction between 4-(dimethylamino)benzaldehyde and three different 4-aminobenzene azo dyes. Quantum chemical calculations on the optimized molecular geometry and electron densities of the trans (E) and cis (Z) isomers and their vibrational frequencies have been computed by using DFT/B3LYP density-functional theory with 6-311++G(d,p) basis set in vacuo. The thermodynamic parameters such as total electronic energy E (RB3LYP), enthalpy H298 (sum of electronic and thermal enthalpies), free Gibbs energy G298 (sum of electronic and thermal free Gibbs energies) and dipole moment µ were computed for trans (E) and cis (Z) isomers in order to estimate the ΔEtrans→cis, Δµtrans→cis,ΔHtrans→cis, ΔGtrans→cis and ΔStrans→cis values. After molecular geometry optimization the electronic spectra have been obtained by TD-DFT calculations at same basis set and correlated with the spectra of vapour deposited nanosized films of the dyes. The NBO analysis was performed in order to understand the intramolecular charge transfer and energy of resonance stabilization. Solvatochromism was investigated by UV-VIS spectroscopy in five different organic solvents with increasing polarity. The dynamic photoisomerization experiments have been performed in DMF by pump lasers λ=355nm (mostly E→Z) and λ=491nm (mostly Z→E) in spectral region 300nm - 800nm at equal concentrations and times of illumination in order to investigate the photodynamical trans-cis-trans properties of the CHN and NN chromophore groups of the dyes.

7.
Artigo em Inglês | MEDLINE | ID: mdl-28024251

RESUMO

In this paper three different "push-pull" 4-aminoazobenzene dyes have been synthesized in order to characterize their photochromic behavior in different solvents. The molecular geometry was optimized by DFT/B3LYP functional combined with the standard 6-31+G(d,p) basis set for trans (E) and cis (Z) isomers and the energy levels of HOMO and LUMO frontier orbitals were computed using IEFPCM solvation in CHCl3 and DMF. The calculated results were compared to the experimental optical band gap and HOMO values of cyclic voltammetry. The intramolecular six-membered hydrogen bond was formed in both isomers of the synthesized dyes. The thermodynamic parameters such as total electronic energy E (RB3LYP), enthalpy H298 (sum of electronic and thermal enthalpies), free Gibbs energy G298 (sum of electronic and thermal free Gibbs energies) and dipole moment µ were computed for trans (E) and cis (Z) isomers in order to estimate the ΔEtrans→cis, Δµtrans→cis, ΔHtrans→cis, ΔGtrans→cis and ΔStrans→cis values. The NBO analysis was performed in order to understand the intramolecular charge transfer and energy of resonance stabilization. The solvatochromic shift was evaluated by UV-VIS spectroscopy in CHCl3 (nonpolar), EtOH (polar protic) and DMF (polar aprotic) solvents to determine the electron withdrawing and donating properties of the substituents on electron transitions energy. Through the increasing solvent polarity a strong bathochromic shift is observed. The photoisomerization experiments have been performed in two solvents CHCl3 (nonpolar) and DMF (polar aprotic) by UV light irradiation with λ=365nm at equal concentrations and time of illuminations. The electronic spectra were computed by TD-DFT after geometry optimization using IEFPCM solvation in CHCl3 and DMF. The degree of photoisomerization was calculated for the three azo chromophores in both solvents. By using first derivative of the UV-VIS spectra it was possible to resolve the overlapped electron transitions absorption bands. The existing intramolecular hydrogen bond in the azo chromophores was discussed in relation to the isomerization mechanisms and relative stability of the cis (Z) isomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA