Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985468

RESUMO

Nanostructural two-dimensional compounds are grabbing the attention of researchers all around the world. This research is progressing quickly due to its wide range of applications in numerous industries and enormous promise for future technological breakthroughs. Growing environmental consciousness has made it vital to treat wastewater and avoid releasing hazardous substances into the environment. Rising consumer expectations have led to the emergence of new, frequently nonbiodegradable compounds. Due to their specific chemical and physical properties, MXenes have recently been identified as promising candidates. MXenes are regarded as a prospective route for environmental remediation technologies, such as photocatalysis, adsorption, and membrane separation, and as electrocatalytic sensors for pollution recognition because of their high hydrophilicity, inherent chemical nature, and robust electrochemistry. The development of catalysts based on MXene materials for the photocatalytic breakdown of pharmaceutical wastes in polluted water is critically evaluated in this study. With an emphasis on the degradation mechanism, the photocatalytic degradation of antibiotics using MXenes and MXene-based nanocomposites is explained in depth. We emphasize the significant difficulties in producing MXenes and their composites, as well as in the degradation of drugs. The successful use of MXenes in water filtration and suggestions for future study are also presented.

2.
Nanomaterials (Basel) ; 12(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36364489

RESUMO

Herein, we reported a unique photo device consisting of monolayer graphene and a few-layer rhenium diselenide (ReSe2) heterojunction. The prepared Gr/ReSe2-HS demonstrated an excellent mobility of 380 cm2/Vs, current on/off ratio ~ 104, photoresponsivity (R ~ 74 AW-1 @ 82 mW cm-2), detectivity (D* ~ 1.25 × 1011 Jones), external quantum efficiency (EQE ~ 173%) and rapid photoresponse (rise/fall time ~ 75/3 µs) significantly higher to an individual ReSe2 device (mobility = 36 cm2 V-1s-1, Ion/Ioff ratio = 1.4 × 105-1.8 × 105, R = 11.2 AW-1, D* = 1.02 × 1010, EQE ~ 26.1%, rise/fall time = 2.37/5.03 s). Additionally, gate-bias dependent Schottky barrier height (SBH) estimation for individual ReSe2 (45 meV at Vbg = 40 V) and Gr/ReSe2-HS (9.02 meV at Vbg = 40 V) revealed a low value for the heterostructure, confirming dry transfer technique to be successful in fabricating an interfacial defects-free junction. In addition, HS is fully capable to demonstrate an excellent gas sensing response with rapid response/recovery time (39/126 s for NO2 at 200 ppb) and is operational at room temperature (26.85 °C). The proposed Gr/ReSe2-HS is capable of demonstrating excellent electro-optical, as well as gas sensing, performance simultaneously and, therefore, can be used as a building block to fabricate next-generation photodetectors and gas sensors.

3.
Chemosphere ; 303(Pt 2): 135103, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35623439

RESUMO

The nitrogen and sulphur oxide (NOx and SO2) emissions are causing a serious threat to the existence of life on earth, requiring their effective removal for a sustainable future. Among various approaches, catalytic or electrochemical reduction of air pollutants (NOx) has gained much attention due to its high efficiency and the possibility of converting these gases into valuable products. However, the required catalysts are generally synthesized from lab-grade chemicals, which may not be a sustainable approach. Herein, a sustainable approach is presented to synthesize an efficient iron-based catalyst directly from industrial/lake wastewater (WW) for NOx-reduction. According to the theoretical calculations and experimental results, Fe-ions could be readily recovered from wastewater because it has the best adsorption efficiency among all other co-existing metals (Ni2+, Cd2+, Co2+, Cu2+, and Cr6+). The subsequent experimental investigations confirmed the preferential Fe adsorption from different WW streams to develop Fe3O4@EDTA-Fe composite, whereby Fe3O4 could be used due to its high recycling ability, and ethylenediaminetetraacetic acid (EDTA) acted as a chelating agent to adsorb Fe-metal from effluents. The Fe3O4@EDTA-Fe exhibited high efficiency (≥87%) for NOx reduction even in the presence of high-degree oxygen contents (10-12%). Moreover, Fe3O4-EDTA-Fe showed excellent long-term stability for 24 h and maintained more than 80% NOx reduction. The fabricated catalyst has a great potential for executing a dual role simultaneously for Fe-recovery and NOx removal, promoting the circular economy concept and providing a potentially sustainable remediation approach for large-scale applications.


Assuntos
Recuperação e Remediação Ambiental , Águas Residuárias , Catálise , Ácido Edético/química , Ferro/química , Oxirredução
4.
Nanomaterials (Basel) ; 11(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34685160

RESUMO

In this work, a novel low-temperature double solvent sol-gel method was used to fabricate (Sm, Ce, Gd) and (Sn, Se, I) co-doped at Bi and Te-sites, respectively, for Bi2Te3 nanostructures. The phase-purity and high crystallinity of as-synthesized nanostructures were confirmed using X-ray diffraction and high-resolution transmission electron microscopy. The nanopowders were hot-pressed by spark plasma sintering into bulk pellets for thermoelectric properties. The spark plasma sintering temperature significantly affects the Seebeck coefficient and electrical conductivity of bulk Bi2Te3 pellets. The electrical conductivities of co-doped samples decrease with an increase in the temperature, but conversely, the Seebeck coefficient is linearly increasing. The power factor showed that the co-dopants enhanced the thermoelectric properties of Bi2Te3 nanopowders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...