Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Probiotics Antimicrob Proteins ; 12(2): 473-480, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31154611

RESUMO

Two-hundred-eighty-day-old broiler chicks were divided into seven groups. The groups were designated as T1, thermoneutral zone; T2, heat stressed (HS); T3, HS + zinc (Zn) supplementation (30 mg/kg); T4, HS + Zn (60 mg/kg); T5, HS + probiotic (0.1 g/kg); T6, HS + probiotic (0.1 g/kg) + Zn (30 mg/kg); and T7, HS + Zn (60 mg/kg) + probiotic (0.1 g/kg). Significant decrease (p < 0.05) was observed in villus height (VH), VH to crypt depth ratio, and villus surface area of all intestinal segments in the T2 group when compared with the T1 group. The same parameters had significantly higher (p < 0.05) values in the jejunum and ileum of the Zn- and probiotic-supplemented groups (alone + combination) when compared with the T2 group. The birds exposed to HS showed fewer (p < 0.05) intraepithelial lymphocytes (IELs) in the jejunum and ileum than the T1 group, while their count increased in the jejunum and ileum with dietary treatments. In conclusion, Zn and probiotic positively modulated the intestinal microstructures of broilers kept under high environmental temperature.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Galinhas/anatomia & histologia , Resposta ao Choque Térmico , Intestinos/anatomia & histologia , Probióticos/administração & dosagem , Zinco/administração & dosagem , Animais
2.
Rev Sci Instrum ; 88(10): 103901, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29092474

RESUMO

A sample environment to enable real-time X-ray scattering measurements to be recorded during the growth of materials by thermal evaporation in vacuum is presented. The in situ capabilities include studying microstructure development with time or during exposure to different environmental conditions, such as temperature and gas pressure. The chamber provides internal slits and a beam stop, to reduce the background scattering from the X-rays passing through the entrance and exit windows, together with highly controllable flux rates of the evaporants. Initial experiments demonstrate some of the possibilities by monitoring the growth of bathophenanthroline (BPhen), a common molecule used in organic solar cells and organic light emitting diodes, including the development of the microstructure with time and depth within the film. The results show how BPhen nanocrystal structures coarsen at room temperature under vacuum, highlighting the importance of using real time measurements to understand the as-deposited pristine film structure and its development with time. More generally, this sample environment is versatile and can be used for investigation of structure-property relationships in a wide range of vacuum deposited materials and their applications in, for example, optoelectronic devices and energy storage.

3.
Beilstein J Nanotechnol ; 8: 1469-1475, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900600

RESUMO

We report on a new approach for the fabrication of ferromagnetic molecular thin films. Co-evaporated films of manganese phthalocyanine (MnPc) and tetracyanoquinodimethane (TCNQ) have been produced by organic molecular beam deposition (OMBD) on rigid (glass, silicon) and flexible (Kapton) substrates kept at room temperature. The MnPc:TCNQ films are found to be entirely amorphous due to the size mismatch of the molecules. However, by annealing while covering the samples highly crystalline MnPc films in the ß-polymorph can be obtained at 60 °C lower than when starting with pure MnPc films. The resulting films exhibit substantial coercivity (13 mT) at 2 K and a Curie temperature of 11.5 K.

4.
Toxins (Basel) ; 9(5)2017 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-28505109

RESUMO

The Vip3 proteins produced during vegetative growth by strains of the bacterium Bacillus thuringiensis show insecticidal activity against lepidopteran insects with a mechanism of action that may involve pore formation and apoptosis. These proteins are promising supplements to our arsenal of insecticidal proteins, but the molecular details of their activity are not understood. As a first step in the structural characterisation of these proteins, we have analysed their secondary structure and resolved the surface topology of a tetrameric complex of the Vip3Ag4 protein by transmission electron microscopy. Sites sensitive to proteolysis by trypsin are identified and the trypsin-cleaved protein appears to retain a similar structure as an octomeric complex comprising four copies each of the ~65 kDa and ~21 kDa products of proteolysis. This processed form of the toxin may represent the active toxin. The quality and monodispersity of the protein produced in this study make Vip3Ag4 a candidate for more detailed structural analysis using cryo-electron microscopy.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Escherichia coli/genética , Microscopia Eletrônica de Transmissão , Estrutura Secundária de Proteína , Proteólise , Tripsina/química , Ultracentrifugação
5.
ACS Appl Mater Interfaces ; 9(24): 20686-20695, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28547994

RESUMO

While organic semiconductors provide tantalizing possibilities for low-cost, light-weight, flexible electronic devices, their current use in transistors-the fundamental building block-is rather limited as their speed and reliability are not competitive with those of their inorganic counterparts and are simply too poor for many practical applications. Through self-assembly, highly ordered nanostructures can be prepared that have more competitive transport characteristics; however, no simple, scalable method has been discovered that can produce devices on the basis of such nanostructures. Here, we show how transistors of self-assembled molecular nanowires can be fabricated using a scalable, gradient sublimation technique, which have dramatically improved characteristics compared to those of their thin-film counterparts, both in terms of performance and stability. Nanowire devices based on copper phthalocyanine have been fabricated with threshold voltages as low as -2.1 V, high on/off ratios of 105, small subthreshold swings of 0.9 V/decade, and mobilities of 0.6 cm2/V s, and lower trap energies as deduced from temperature-dependent properties, in line with leading organic semiconductors involving more complex fabrication. High-performance transistors manufactured using our scalable deposition technique, compatible with flexible substrates, could enable integrated all-organic chips implementing conventional as well as neuromorphic computation and combining sensors, logic, data storage, drivers, and displays.

6.
Nature ; 503(7477): 504-8, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24162849

RESUMO

Organic semiconductors are studied intensively for applications in electronics and optics, and even spin-based information technology, or spintronics. Fundamental quantities in spintronics are the population relaxation time (T1) and the phase memory time (T2): T1 measures the lifetime of a classical bit, in this case embodied by a spin oriented either parallel or antiparallel to an external magnetic field, and T2 measures the corresponding lifetime of a quantum bit, encoded in the phase of the quantum state. Here we establish that these times are surprisingly long for a common, low-cost and chemically modifiable organic semiconductor, the blue pigment copper phthalocyanine, in easily processed thin-film form of the type used for device fabrication. At 5 K, a temperature reachable using inexpensive closed-cycle refrigerators, T1 and T2 are respectively 59 ms and 2.6 µs, and at 80 K, which is just above the boiling point of liquid nitrogen, they are respectively 10 µs and 1 µs, demonstrating that the performance of thin-film copper phthalocyanine is superior to that of single-molecule magnets over the same temperature range. T2 is more than two orders of magnitude greater than the duration of the spin manipulation pulses, which suggests that copper phthalocyanine holds promise for quantum information processing, and the long T1 indicates possibilities for medium-term storage of classical bits in all-organic devices on plastic substrates.

7.
ACS Nano ; 6(12): 10808-15, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23186550

RESUMO

Nanostructure and molecular orientation play a crucial role in determining the functionality of organic thin films. In practical devices, such as organic solar cells consisting of donor-acceptor mixtures, crystallinity is poor and these qualities cannot be readily determined by conventional diffraction techniques, while common microscopy only reveals surface morphology. Using a simple nondestructive technique, namely, continuous-wave electron paramagnetic resonance spectroscopy, which exploits the well-understood angular dependence of the g-factor and hyperfine tensors, we show that in the solar cell blend of C(60) and copper phthalocyanine (CuPc)-for which X-ray diffraction gives no information-the CuPc, and by implication the C(60), molecules form nanoclusters, with the planes of the CuPc molecules oriented perpendicular to the film surface. This information demonstrates that the current nanostructure in CuPc:C(60) solar cells is far from optimal and suggests that their efficiency could be considerably increased by alternative film growth algorithms.


Assuntos
Fontes de Energia Elétrica , Fulerenos/química , Indóis/química , Nanoestruturas/química , Compostos Organometálicos/química , Energia Solar , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Molecular
8.
J Am Chem Soc ; 134(35): 14302-5, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22897507

RESUMO

The structure of copper phthalocyanine (CuPc) thin films (5-100 nm) deposited on single-crystal ZnO(1100) substrates by organic molecular beam deposition was determined from grazing-incidence X-ray diffraction reciprocal space maps. The crystal structure was identified as the metastable polymorph α-CuPc, but the molecular stacking was found to vary depending on the film thickness: for thin films, a herringbone arrangement was observed, whereas for films thicker than 10 nm, coexistence of both the herringbone and brickstone arrangements was found. We propose a modified structure for the herringbone phase with a larger monoclinic ß angle, which leads to intrastack Cu-Cu distances closer to those in the brickstone phase. This structural basis enables an understanding of the functional properties (e.g., light absorption and charge transport) of (opto)electronic devices fabricated from CuPc/ZnO hybrid systems.

9.
ACS Nano ; 4(7): 3921-6, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20527798

RESUMO

The development of molecular nanostructures plays a major role in emerging organic electronic applications, as it leads to improved performance and is compatible with our increasing need for miniaturization. In particular, nanowires have been obtained from solution or vapor phase and have displayed high conductivity or large interfacial areas in solar cells. In all cases however, the crystal structure remains as in films or bulk, and the exploitation of wires requires extensive postgrowth manipulation as their orientations are random. Here we report copper phthalocyanine (CuPc) nanowires with diameters of 10-100 nm, high directionality, and unprecedented aspect ratios. We demonstrate that they adopt a new crystal phase, designated eta-CuPc, where the molecules stack along the long axis. The resulting high electronic overlap along the centimeter length stacks achieved in our wires mediates antiferromagnetic couplings and broadens the optical absorption spectrum. The ability to fabricate ultralong, flexible metal phthalocyanine nanowires opens new possibilities for applications of these simple molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...