Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0295822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096179

RESUMO

Efficient gene therapy relies on an efficient gene delivery system. Viral gene delivery approaches excel in transferring and expressing external genes; however, their immunogenicity and difficulty in large-scale production limit their clinical applications. In contrast, nanoparticle-based gene delivery systems have gained increasing attention due to less immunogenicity and more convenience for large-scale production. Nevertheless, their poor transfection efficiency compared to viral systems remains a significant obstacle. In the present study, we investigated the transfection efficiency of our PEI-coated graphene oxides in HEK293T, Calu-3, Calu-6 cell lines, and primary human bone marrow mesenchymal stem cell (MSC). The high surface ratio and good biocompatibility of graphene oxide make it an appealing tool for gene delivery systems. However, the low dispersity of graphene oxide in aqueous environments is the first barrier that needs to be conquered. For this, we enhanced the dispersity and stability of graphene oxide in water by sonicating it for at least 5 hours at a pH of 7. Then, graphene oxide was conjugated with branched PEI (25 kDa) to have a positive charge, enabling it to condense nucleic acids with a naturally negative potential. The physio-chemical characteristics of our synthesized nano-carriers (GO-PEI) were determined by DLS, FT-IR, and AFM. The utilized plasmid in polyplexes contained a GFP gene, allowing us to verify transfection efficiency through fluorescent microscopy and flow cytometry. While GO-PEI carriers were highly efficient in transfecting HEK293T cells, the transfection efficiency in MSCs and Calu-3 cells was notably low. We suppose that the main reason for the low transfection efficiency of GO-PEI in these cells is due to its higher toxicity. Despite this, considering the various advantages of graphene oxide in drug delivery as well as its optical and electrical applications in biomedicine, we propose to functionalize graphene oxide with more biocompatible materials to enhance its potential as a successful gene carrier in these cell types.


Assuntos
Grafite , Células-Tronco Mesenquimais , Neoplasias , Humanos , Grafite/metabolismo , Polietilenoimina , Espectroscopia de Infravermelho com Transformada de Fourier , Células HEK293 , Plasmídeos/genética , Transfecção , Técnicas de Transferência de Genes , Neoplasias/metabolismo
2.
ACS Omega ; 7(18): 15996-16012, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571799

RESUMO

In this study, a comprehensive characterization of iron oxide nanoparticles synthesized by using a simple one-pot thermal decomposition route is presented. In order to obtain monodisperse magnetite nanoparticles with high saturation magnetization, close to the bulk material, the molar ratios between the starting materials (solvents, reducing agents, and surfactants) were varied. Two out of nine conditions investigated in this study resulted in monodisperse iron oxide nanoparticles with high saturation magnetization (90 and 93% of bulk magnetite). The X-ray diffraction analyses along with the inspection of the lattice structure through transmission electron micrographs revealed that the main cause of the reduced magnetization in the other seven samples is likely due to the presence of distortion and microstrain in the particles. Although the thermogravimetric analysis, Raman and Fourier transform infrared spectroscopies confirmed the presence of covalently bonded oleic acid on the surface of all the samples, the particles with higher polydispersity and the lowest surface coating molecules showed the lowest saturation magnetization. Based on the observed results, it could be speculated that the changes in the kinetics of the reactions, induced by varying the molar ratio of the starting chemicals, can lead to the production of the particles with higher polydispersity and/or lattice deformation in their crystal structures. Finally, it was concluded that the experimental conditions for obtaining high-quality iron oxide nanoparticles, particularly the molar ratios and the heating profile, should not be chosen independently; for any specific molar ratio, there may exist a specific heating profile or vice versa. Because this synthetic consideration has rarely been reported in the literature, our results can give insights into the design of iron oxide nanoparticles with high saturation magnetization for different applications.

3.
Sci Rep ; 12(1): 2235, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140246

RESUMO

The photo-physical properties of metal nano clusters are sensitive to their surrounding medium. Fluorescence enhancement, quenching, and changes in the emitted photon properties are usual events in the sensing applications using these nano materials. Combining this sensitivity with unique properties of self-assembled structures opens new opportunities for sensing applications. Here, we synthesized gold nanoclusters by utilizing phenylalanine amino acid as both capping and reducing molecule. Phenylalanine is able to self-assemble to rod-shaped nano structure in which the π-π interaction between the aromatic rings is a major stabilizing force. Any substance as iodide anion or molecule that is able to weaken this interaction influence the fluorescence of metal nano-clusters. Since the building blocks of the self-assembled structure are made through the reaction of gold ions and phenylalanine, the oxidized products and their effect of sensing features are explored.

4.
Colloids Surf B Biointerfaces ; 204: 111774, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33932893

RESUMO

A variety of organic nanomaterials and organic polymers are used for enzyme immobilization to increase enzymes stability and reusability. In this study, the effects of the immobilization of enzymes on organic and organic-inorganic hybrid nano-supports are compared. Immobilization of enzymes on organic support nanomaterials was reported to significantly improve thermal, pH and storage stability, acting also as a protection against metal ions inhibitory effects. In particular, the effects of enzyme immobilization on reusability, physical, kinetic and thermodynamic parameters were considered. Due to their biocompatibility with low health risks, organic support nanomaterials represent a good choice for the immobilization of enzymes. Organic nanomaterials, and especially organic-inorganic hybrids, can significantly improve the kinetic and thermodynamic parameters of immobilized enzymes compared to macroscopic supports. Moreover, organic nanomaterials are more environment friendly for medical applications, such as prodrug carriers and biosensors. Overall, organic hybrid nanomaterials are receiving increasing attention as novel nano-supports for enzyme immobilization and will be used extensively.


Assuntos
Enzimas Imobilizadas , Nanoestruturas , Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Cinética
5.
Sci Rep ; 11(1): 1962, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479381

RESUMO

The story of human dreams about curing all diseases, disorders and lesions is as old as human history. In the frontier of medical science, nanomedicine is trying to solve the problem. In this study, inspired by nanotechnology and using "grafting from" approach, a novel lignin-based nanogel was synthesized using atom transfer radical polymerization (ATRP) method. N-isopropylacrylamide (NIPAM) and N,N-dimethylaminoethylmethacrylate (DMAEMA) comonomers were graft copolymerized from fully brominated lignin as ATRP macroinitiator to synthesize lignin-g-P(NIPAM-co-DMAEMA) nanogel (LNDNG). By controlling the initial comonomer compositions and ATRP conditions, four LNDNG systems with different lower critical solution temperatures (LCSTs) of 32, 34, 37 and 42 °C were prepared. The LNDNGs were evaluated by GPC, FT-IR, 1H NMR, UV-Vis, DLS, SEM and TEM analyses. The prepared nanogels exhibited an average diameter of 150 nm with dual temperature and pH responsiveness. Curcumin (CUR) loading capacity and encapsulation efficiency of the LNDNGs were 49.69% and 92.62% on average, respectively. The cumulative release amount of loaded CUR was observed to be 65.36% after 72 h. The new lignin-based NGs proposed in the present work seems to be a promising, safe and comparable system in a near future.

6.
Int J Biol Macromol ; 168: 708-721, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33232698

RESUMO

Despite the widespread use in various industries, enzyme's instability and non-reusability limit their applications which can be overcome by immobilization. The nature of the enzyme's support material and method of immobilization affect activity, stability, and kinetics properties of enzymes. Here, we report a comparative study of the effects of inorganic support materials on immobilized enzymes. Accordingly, immobilization of enzymes on nanoinorganic support materials significantly improved thermal and pH stability. Furthermore, immobilizations of enzymes on the materials mainly increased Km values while decreased the Vmax values of enzymes. Immobilized enzymes on nanoinorganic support materials showed the increase in ΔG value, and decrease in both ΔH and ΔS values. In contrast to weak physical adsorption immobilization, covalently-bound and multipoint-attached immobilized enzymes do not release from the support surface to contaminate the product and thus the cost is decreased while the product quality is increased. Nevertheless, nanomaterials can enter the environment and increase health and environmental risks and should be used cautiously. Altogether, it can be predicated that hybrid support materials, directed immobilization methods, site-directed mutagenesis, recombinant fusion protein technology, green nanomaterials and trailor-made supports will be used increasingly to produce more efficient immobilized industrial enzymes in near future.


Assuntos
Enzimas Imobilizadas/química , Mutagênese Sítio-Dirigida , Nanoestruturas/química , Adsorção , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Cinética , Termodinâmica
7.
Mol Pharm ; 17(12): 4483-4498, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33205974

RESUMO

Mitochondrial malfunction plays a crucial role in cancer development and progression. Cancer cells show a substantially higher mitochondrial activity and greater mitochondrial transmembrane potential than normal cells. This concept can be exploited for targeting cytotoxic drugs to the mitochondria of cancer cells using mitochondrial-targeting compounds. In this study, a polyamidoamine dendrimer-based mitochondrial delivery system was prepared for curcumin using triphenylphosphonium ligands to improve the anticancer efficacy of the drug in vitro and in vivo. For the in vitro evaluations, various methods, such as viability assay, confocal microscopy, flow cytometry, reactive oxygen species (ROS), and real-time polymerase chain reaction analyses, were applied. Our findings showed that the targeted-dendrimeric curcumin (TDC) could successfully deliver and colocalize the drug to the mitochondria of the cancer cells, and selectively induce a potent apoptosis and cell cycle arrest at G2/M. Moreover, at a low curcumin dose of less than 25 µM, TDC significantly reduced adenosine triphosphate and glutathione, and increased the ROS level of the isolated rat hepatocyte mitochondria. The in vivo studies on the Hepa1-6 tumor-bearing mice also indicated a significant tumor suppression effect and the highest median survival days (Kaplan-Meier survival estimation and log-rank test) after treatment with the TDC construct compared to the free curcumin and untargeted construct. Besides its targeted nature and safety, the expected improved solubility and stability represent the prepared targeted-dendrimeric construct as an up-and-coming candidate for cancer treatment. The results of this study emphasize the promising route of mitochondrial targeting as a practical approach for cancer therapy, which can be achieved by optimizing the delivery method.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Curcumina/administração & dosagem , Portadores de Fármacos/química , Neoplasias Hepáticas/tratamento farmacológico , Poliaminas/química , Animais , Carcinoma Hepatocelular/patologia , Fracionamento Celular , Linhagem Celular Tumoral , Curcumina/química , Dendrímeros/química , Estabilidade de Medicamentos , Hepatócitos , Humanos , Neoplasias Hepáticas/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Cultura Primária de Células , Ratos , Solubilidade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Iran J Biotechnol ; 18(3): e2645, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33850948

RESUMO

BACKGROUND: Dynamic light scattering (DLS) and electron microscopy (EM) are the most practical techniques for nanoparticles (NPs) characterization. However, the impediments which involved the sample preparation method lead to failure in provided results of mentioned device analysis. These problems will be intensifying, if the examined samples are the soft nanocarriers such as organic ones or biological samples. OBJECTIVES: In order to achieve the appropriate results from DLS and EM analysis, an optimized protocol was introduced by this research which would prepare samples with high degree of quality and accuracy. MATERIALS AND METHODS: Morphological analysis of prepared polymeric nanocarriers (micelles, nanogels) by this protocol were done. Filtration, dilution and sonication as three crucial and effectiveness steps of sample preparation were assessed through DLS data and EM images. RESULTS: This research has tried to introduce a facile method with novelty of simplicity and rapidity. These triple steps could improve the quality of morphological data. The obtained results indicated that sample preparation methods have the most effective factors on sample size distribution and homogeneity of desired samples. CONCLUSION: The suggested optimized preparation method will be helpful for all soft nanomaterial's samples.

9.
Sci Rep ; 8(1): 8112, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802331

RESUMO

Engineering molecules at nano-scale is a promising approach in targeting and curing diseases. In this research, fabricated new hybrid system called nano-polyplex represents an example of the molecular engineering at nano-scale. Polymer of PDMAEAs with four different molecular weights were synthesized using the RAFT method, attached onto the gold nano-rod surface, which modified and produced a safe novel system with an average size less than 100 nm. The hybrid system was characterized by ultra violet-visible spectrophotometer (UV-Vis), dynamic light scattering (DLS), 1H NMR, gel permeation chromatography (GPC), Fourier transform-infrared (FT-IR) spectroscopy, Zeta potential analyzer and transmission electron microscopy (TEM). Features of higher transfection and lower toxicity compared to the previously reported polyplex of PDMAEA, as well as the gold standard PEI, have been shown in all molecular weights and defined N/P ratios (10-200). The ideal physicochemical properties for escaping from the cell barriers, covering the large volume of genetic material (pDNA) and high efficiency of loading polyplexes on GNRs' surface make it an ideal carrier. The results of this effort pave way in designing a new generation of nanoparticle-based delivery systems for nucleic acid therapy and gene editing.


Assuntos
DNA/química , DNA/genética , Ouro/química , Nanopartículas Metálicas/química , Metacrilatos/química , Nylons/química , Plasmídeos/genética , Transfecção , Catálise , Técnicas de Química Sintética , Portadores de Fármacos/química , Células HEK293 , Humanos , Nanotecnologia , Tamanho da Partícula , Polietilenoimina/química , Propriedades de Superfície
10.
Sci Rep ; 7(1): 12965, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021589

RESUMO

Besides the wide applications of titanium and its alloys for orthopedic and biomedical implants, the biocompatible nature of titanium has emerged various surface modification techniques to enhance its bioactivity and osteointegration with living tissues. In this work, we present a new procedure for nanoscale surface modification of titanium implants by integration of magnesium-rich islands combined with controlled formation of pores and refinement of the surface grain structure. Through severe plastic deformation of the titanium surface with fine magnesium hydride powder, Mg-rich islands with varying sizes ranging from 100 nm to 1000 nm can be integrated inside a thin surface layer (100-500 µm) of the implant. Selective etching of the surface forms a fine structure of surface pores which their average size varies in the range of 200-500 nm depending on the processing condition. In vitro biocompatibility and hemocompatibility assays show that the Mg-rich islands and the induced surface pores significantly enhance cell attachment and biocompatibility without an adverse effect on the cell viability. Therefore, severe plastic integration of Mg-rich islands on titanium surface accompanying with porosification is a new and promising procedure with high potential for nanoscale modification of biomedical implants.


Assuntos
Magnésio/farmacologia , Teste de Materiais , Titânio/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , Porosidade , Espectrometria por Raios X , Propriedades de Superfície
11.
Mol Biol Res Commun ; 3(1): 9-19, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27843973

RESUMO

Most plants encounter stress such as drought and salinity that adversely affect growth, development and crop productivity. The expression of the gene glutathione-s-transferases (GST) extends throughout various protective mechanisms in plants and allows them to adapt to unfavorable environmental conditions. GSTF1 (the first phi GSTFs class) gene expression patterns in the wheat cultivars Mahuti and Alamut were studied under salt and ABA treatments using a qRT-PCR technique. Results showed that gene expression patterns were significantly different in these two cultivars. Data showed that in Mahuti, there was an increase of transcript accumulation under salt and ABA treatments at 3h, 10h and 72h respectively. In Alamut, however, the pattern of transcript accumulation was different; the maximum was at 3h. In contrast, there were no significant differences observed between the cultivars for GSTF1 gene expression profiles at three levels of NaCl concentration (50, 100, and 200 mM) or in ABA (Abscisic Acid) treatment. It is likely that difference of gene expression patterns between the cultivars (Mahuti as a salt tolerant cultivar and Alamut as a salt sensitive cultivar) is due to distinct signaling pathways which activate GSTF1 expression. Lack of a significant difference between the GSTF1 gene expression profile under salt and ABA treatments suggests that the GSTF1 gene is not induced by stress stimuli. Of course it is possible that other levels of NaCl and ABA treatments cause a change in the GSTF1 gene.

12.
PLoS One ; 8(1): e52757, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341906

RESUMO

Low temperature injury is one of the most significant causes of crop damage worldwide. Cold acclimatization processes improve the freezing tolerance of plants. To identify genes of potential importance for acclimatzation to the cold and to elucidate the pathways that regulate this process, global transcriptome expression of the chickpea (Cicer arietinum L), a species of legume, was analyzed using the cDNA-AFLP technique. In total, we generated 4800 transcript-derived fragments (TDFs) using cDNA-AFLP in conjunction with 256 primer combinations. We only considered those cDNA fragments that seemed to be up-regulated during cold acclimatization. Of these, 102 TDFs with differential expression patterns were excised from gels and re-amplified by PCR. Fifty-four fragments were then cloned and sequenced. BLAST search of the GenBank non-redundant (nr) sequence database demonstrated that 77 percent of the TDFs belonged to known sequences with putative functions related to metabolism (31), transport (10), signal transduction pathways (15) and transcription factors (21). The last group of expressed transcripts showed homology to genes of unknown function (22). To further analyze and validate our cDNA-AFLP experiments, the expression of 9 TDFs during cold acclimatzatiion was confirmed using real time RT-PCR. The results of this research show that cDNA-AFLP is a powerful technique for investigating the expression pattern of chickpea genes under low-temperature stress. Moreover, our findings will help both to elucidate the molecular basis of low-temperature effects on the chickpea genome and to identify those genes that could increase the cold tolerance of the chickpea plant.


Assuntos
Adaptação Fisiológica/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Cicer/genética , Temperatura Baixa , DNA Complementar/genética , Genes de Plantas/genética , Regulação para Cima/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...