Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038209

RESUMO

The level of methylesterification alters the functional properties of pectin, which is believed to influence plant growth and development. However, the mechanisms that regulate demethylesterification remain largely unexplored. Pectin with a high degree of methylesterification is produced in the Golgi apparatus and then transferred to the primary cell wall where it is partially demethylesterified by pectin methylesterases (PMEs). Here, we show that in Arabidopsis (Arabidopsis thaliana) seed mucilage, pectin demethylesterification is negatively regulated by the transcription factor ZINC FINGER FAMILY PROTEIN5 (ZAT5). Plants carrying null mutations in ZAT5 had increased PME activity, decreased pectin methylesterification, and produced seeds with a thinner mucilage layer. We provide evidence that ZAT5 binds to a TGATCA-motif and thereby negatively regulates methylesterification by reducing the expression of PME5, HIGHLY METHYL ESTERIFIED SEEDS (HMS)/PME6, PME12, and PME16. We also demonstrate that ZAT5 physically interacts with BEL1-LIKE HOMEODOMAIN2 (BLH2) and BLH4 transcription factors. BLH2 and BLH4 are known to modulate pectin demethylesterification by directly regulating PME58 expression. The ZAT5-BLH2/4 interaction provides a mechanism to control the degree of pectin methylesterification in seed coat mucilage by modifying each transcription factor's ability to regulate the expression of target genes encoding PMEs. Taken together, these findings reveal a transcriptional regulatory module comprising ZAT5, BLH2 and BLH4, that functions in modulating the de-methylesterification of homogalacturonan in seed coat mucilage.

2.
Plant Physiol ; 195(3): 1818-1834, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38573326

RESUMO

Bacterial wilt severely jeopardizes plant growth and causes enormous economic loss in the production of many crops, including tobacco (Nicotiana tabacum). Here, we first demonstrated that the roots of bacterial wilt-resistant tobacco mutant KCB-1 can limit the growth and reproduction of Ralstonia solanacearum. Secondly, we demonstrated that KCB-1 specifically induced an upregulation of naringenin content in root metabolites and root secretions. Further experiments showed that naringenin can disrupt the structure of R. solanacearum, inhibit the growth and reproduction of R. solanacearum, and exert a controlling effect on bacterial wilt. Exogenous naringenin application activated the resistance response in tobacco by inducing the burst of reactive oxygen species and salicylic acid deposition, leading to transcriptional reprogramming in tobacco roots. Additionally, both external application of naringenin in CB-1 and overexpression of the Nicotiana tabacum chalcone isomerase (NtCHI) gene, which regulates naringenin biosynthesis, in CB-1 resulted in a higher complexity of their inter-root bacterial communities than in untreated CB-1. Further analysis showed that naringenin could be used as a marker for resistant tobacco. The present study provides a reference for analyzing the resistance mechanism of bacterial wilt-resistant tobacco and controlling tobacco bacterial wilt.


Assuntos
Flavanonas , Mutação , Nicotiana , Doenças das Plantas , Raízes de Plantas , Ralstonia solanacearum , Ralstonia solanacearum/efeitos dos fármacos , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade , Nicotiana/microbiologia , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Flavanonas/farmacologia , Flavanonas/metabolismo , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Mutação/genética , Resistência à Doença/genética , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
3.
Front Microbiol ; 14: 1059799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778883

RESUMO

Plants respond to Ralstonia solanacearum infestation through two layers of immune system (PTI and ETI). This process involves the production of plant-induced resistance. Strategies for inducing resistance in plants include the formation of tyloses, gels, and callose and changes in the content of cell wall components such as cellulose, hemicellulose, pectin, lignin, and suberin in response to pathogen infestation. When R. solanacearum secrete cell wall degrading enzymes, plants also sense the status of cell wall fragments through the cell wall integrity (CWI) system, which activates deep-seated defense responses. In addition, plants also fight against R. solanacearum infestation by regulating the distribution of metabolic networks to increase the production of resistant metabolites and reduce the production of metabolites that are easily exploited by R. solanacearum. We review the strategies used by plants to induce resistance in response to R. solanacearum infestation. In particular, we highlight the importance of plant-induced physical and chemical defenses as well as cell wall defenses in the fight against R. solanacearum.

4.
PeerJ ; 11: e14669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650839

RESUMO

The more axillary growth (MAX) gene family is a group of key genes involved in the synthesis and signal transduction of strigolactones (SLs) in plants. Although MAX genes play vital roles in plant growth and development, characterization of the MAX gene family has been limited in solanaceous crops, especially in tobacco. In this study, 74 members of the MAX family were identified in representative Solanaceae crops and classified into four groups. The physicochemical properties, gene structure, conserved protein structural domains, cis-acting elements, and expression patterns could be clearly distinguished between the biosynthetic and signal transduction subfamilies; furthermore, MAX genes in tobacco were found to be actively involved in the regulation of meristem development by responding to hormones. MAX genes involved in SL biosynthesis were more responsive to abiotic stresses than genes involved in SL signaling. Tobacco MAX genes may play an active role in stress resistance. The results of this study provide a basis for future in-depth analysis of the molecular mechanisms of MAX genes in tobacco meristem development and stress resistance.


Assuntos
Nicotiana , Proteínas de Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Transdução de Sinais/genética , Lactonas/metabolismo
5.
Food Res Int ; 162(Pt B): 112082, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461331

RESUMO

Chinese wild rice (Zizania latifolia) is rich in flavonoids and the characteristic colour of its pericarp is attributed to the flavonoids. In this study, the molecular basis of the colour change in the pericarp of Chinese wild rice was studied using metabolomics and proteomics. Whole seeds in three developmental stages (10, 20, and 30 days after flowering) were characterised based on phenolic contents, free amino acids (FAAs), and the expression level and activities of enzymes critical in flavonoid biosynthesis. The total phenolic and proanthocyanidin contents of Chinese wild rice increased gradually, whereas total flavonoid and FAA contents decreased during seed development. Metabolomic analysis revealed gradual upward trends for 57 flavonoids (sub classes 1, 3, and 10) related to colour change in the pericarp. Proteomic analysis showed that the phenylpropanoid biosynthesis metabolic pathway was enriched with differentially expressed proteins and was associated with flavonoid biosynthesis. Proteomic data suggested that leucoanthocyanidin reductase and WD40 repeat protein may be involved in flavonoid biosynthesis in Chinese wild rice, which was also verified by real-time quantitative PCR. Our results provide new insights into the understanding of the colour formation in the pericarp of Chinese wild rice.


Assuntos
Oryza , China , Cor , Flavonoides , Oryza/genética , Fenóis , Poaceae , Proteômica
6.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555582

RESUMO

The loss of seed shattering is an important event in crop domestication, and elucidating the genetic mechanisms underlying seed shattering can help reduce yield loss during crop production. This study is the first to systematically identify and analyse the BELL family of transcription factor-encoding genes in Chinese wild rice (Zizania latifolia). ZlqSH1a (Zla04G033720) and ZlqSH1b (Zla02G027130) were identified as key candidate genes involved in seed shattering in Z. latifolia. These genes were involved in regulating the development of the abscission layer (AL) and were located in the nucleus of the cell. Over-expression of ZlqSH1a and ZlqSH1b resulted in a complete AL between the grain and pedicel and significantly enhanced seed shattering after grain maturation in rice. Transcriptome sequencing revealed that 172 genes were differentially expressed between the wild type (WT) and the two transgenic (ZlqSH1a and ZlqSH1b over-expressing) plants. Three of the differentially expressed genes related to seed shattering were validated using qRT-PCR analysis. These results indicate that ZlqSH1a and ZlqSH1b are involved in AL development in rice grains, thereby regulating seed shattering. Our results could facilitate the genetic improvement of seed-shattering behaviour in Z. latifolia and other cereal crops.


Assuntos
Oryza , Domesticação , Genes de Plantas , Sementes , Grão Comestível/genética
7.
Sci Rep ; 12(1): 18309, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316337

RESUMO

Tobacco bacterial wilt has seriously affected tobacco production. Ethyl methanesulfonate (EMS) induced tobacco bacterial wilt resistant mutants are important for the control of tobacco bacterial wilt. High-throughput sequencing technology was used to study the rhizosphere bacterial community assemblages of bacterial wilt resistant mutant tobacco rhizosphere soil (namely KS), bacterial wilt susceptible tobacco rhizosphere soil (namely GS) and bulk soil (namely BS) in Xuancheng, Huanxi, Yibin and Luzhou. Alpha analysis showed that the bacterial community diversity and richness of KS and GS in the four regions were not significantly different. However, analysis of intergroup variation in the top 15 bacterial communities in terms of abundance showed that the bacterial communities of KS and GS were significantly different from BS, respectively. In addition, pH, alkali-hydrolysable nitrogen (AN) and soil organic carbon (SOC) were positively correlated with the bacterial community of KS and negatively correlated with GS in the other three regions except Huanxi. Network analysis showed that the three soils in the four regions did not show a consistent pattern of network complexity. PICRUSt functional prediction analysis showed that the COG functions were similar in all samples. All colonies were involved in RNA processing and modification, chromatin structure and dynamics, etc. In conclusion, our experiments showed that rhizosphere bacterial communities of tobacco in different regions have different compositional patterns, which are strongly related to soil factors.


Assuntos
Nicotiana , Rizosfera , Nicotiana/microbiologia , Microbiologia do Solo , Solo/química , Carbono , Biodiversidade , Bactérias/genética
8.
Genomics ; 114(5): 110471, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36055574

RESUMO

Ralstonia solanacearum severely damages the growth of tobacco (Nicotiana tabacum L.) and causes great economic losses in tobacco production. To investigate the root metabolism and transcriptional characteristics of tobacco bacterial wilt susceptible variety Cuibi-1 (CB-1) and resistant new line KCB-1 (derived from an ethyl methanesulfonate (EMS) mutant of CB-1) after infestation with R. solanacearum, root metabolism and transcriptional characteristics were investigated using RNA-Seq and liquid chromatography-mass spectrometry (LC-MS). Differences in resistance between KCB-1 and CB-1 were observed in several aspects: (1) The phenylpropanoid pathway was the main pathway of resistance to bacterial wilt in KCB-1 compared with CB-1. (2) KCB-1 had more differential metabolic markers of disease resistance than CB-1 after infection with R. solanacearum. Among them, the differential coumarin-like metabolites that affect quorum sensing (QS) and biofilm formation of R. solanacearum differ in KCB-1 and CB-1. (3) KCB-1 inhibited production of the R. solanacearum metabolite putrescine, and the level of putrescine in tobacco was positively correlated with susceptibility. (4) Compared with CB-1, the metabolites of KCB-1 had less differential nitrogen sources during the infestation of R. solanacearum, which was detrimental to the growth and reproduction of R. solanacearum. (5) Both indole-3-acetic acid (IAA) and abscisic acid (ABA) in CB-1 and KCB-1 were involved in the response to R. solanacearum infestation, but the levels of IAA and ABA in KCB-1 were greater than in CB-1 at 24 h post inoculation (hpi). In conclusion, R. solanacearum caused reprogramming of both root metabolism and transcription in KCB-1 and CB-1, and the transcriptional and metabolic characteristics of resistant tobacco were more unfavorable to R. solanacearum.


Assuntos
Ácido Abscísico , Nicotiana , Cumarínicos , Metanossulfonato de Etila , Nitrogênio , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Putrescina , Nicotiana/genética , Nicotiana/microbiologia , Transcriptoma
9.
J Integr Plant Biol ; 64(9): 1673-1689, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35775119

RESUMO

Endoreduplication is prevalent during plant growth and development, and is often correlated with large cell and organ size. Despite its prevalence, the transcriptional regulatory mechanisms underlying the transition from mitotic cell division to endoreduplication remain elusive. Here, we characterize ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR 4 (ERF4) as a positive regulator of endoreduplication through its function as a transcriptional repressor. ERF4 was specifically expressed in mature tissues in which the cells were undergoing expansion, but was rarely expressed in young organs. Plants overexpressing ERF4 exhibited much larger cells and organs, while plants that lacked functional ERF4 displayed smaller organs than the wild-type. ERF4 was further shown to regulate cell size by controlling the endopolyploidy level in the nuclei. Moreover, ERF4 physically associates with the class I TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) protein TCP15, a transcription factor that inhibits endoreduplication by activating the expression of a key cell-cycle gene, CYCLIN A2;3 (CYCA2;3). A molecular and genetic analysis revealed that ERF4 promotes endoreduplication by directly suppressing the expression of CYCA2;3. Together, this study demonstrates that ERF4 and TCP15 function as a module to antagonistically regulate each other's activity in regulating downstream genes, thereby controlling the switch from the mitotic cell cycle to endoreduplication during leaf development. These findings expand our understanding of how the control of the cell cycle is fine-tuned by an ERF4-TCP15 transcriptional complex.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Endorreduplicação , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Front Plant Sci ; 13: 827453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251097

RESUMO

Xyloglucan is a quantitatively major polysaccharide in the primary cell walls of flowering plants and has been reported to affect plants' ability to tolerate toxic elements. However, it is not known if altering the amounts of xyloglucan in the wall influences the uptake and translocation of inorganic arsenic (As). Here, we identified two Nicotiana tabacum genes that encode xyloglucan-specific xylosyltransferases (XXT), which we named NtXXT1 and NtXXT2. We used CRISPR-Cas9 technology to generate ntxxt1, ntxxt2, and ntxxt1/2 mutant tobacco plants to determine if preventing xyloglucan synthesis affects plant growth and their ability to accumulate As. We show that NtXXT1 and NtXXT2 are required for xyloglucan biosynthesis because no discernible amounts of xyloglucan were present in the cell walls of the ntxxt1/2 double mutant. The tobacco double mutant (ntxxt1/2) and the corresponding Arabidopsis mutant (atxxt1/2) do not have severe growth defects but do have a short root hair phenotype and a slow growth rate. This phenotype is rescued by overexpressing NtXXT1 or NtXXT2 in atxxt1/2. Growing ntxxt mutants in the presence of AsIII or AsV showed that the absence of cell wall xyloglucan affects the accumulation and translocation of As. Most notably, root retention of As increased substantially and the amounts of As translocated to the shoots decreased in ntxxt1/2. Our results suggest that xyloglucan-deficient plants provide a strategy for the phytoremediation of As contaminated soils.

11.
Plant Physiol Biochem ; 168: 230-238, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649026

RESUMO

Pectin is one of the major components of plant primary cell wall polysaccharides. The degree of pectin methylesterification (DM) plays an important role in the process of plant growth. However, little is known about the underlying regulatory mechanisms during the process of pectin demethylesterification. Here, we characterized mucilage defect 1 (mud1), a novel Arabidopsis thaliana mutant, which displays increased mucilage adherence resulting from increased activities of pectin methylesterases (PMEs) and decreased degree of pectin methylesterification (DM). MUD1 encodes a nuclear protein with a Really Interesting New Gene (RING)-v domain and is highly expressed in developing seed coat when seed coat mucilage starts to accumulate. We have demonstrated that MUD1 has E3 ubiquitin ligase activity in vitro. The expression of PME-related genes, including MYB52, LUH, SBT1.7, PMEI6, and PMEI14 decreased considerably in mud1. We propose that MUD1 acts as an ubiquitin ligase potentially regulating the DM of pectin by post-transcriptionally removing proteins that normally negatively regulate the level or activity of PMEs in the seed coat mucilage.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mucilagem Vegetal , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Sci Rep ; 11(1): 17513, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471163

RESUMO

The control of axillary bud development after removing the terminal buds (topping) of plants is a research hotspot, and the control of gene expression, like switching on and off, allows us to further study biological traits of interest, such as plant branching and fertility. In this study, a toxin gene control system for plants based on dexamethasone (DEX) induction was constructed, and the positive transgenic tobacco exhibited growth retardation in the application area (axillary bud). The expression level of the lethal Diphtheria toxin A (DTA) gene under different DEX concentrations at different application days was analyzed. The highest expression levels appeared at 5 days after the leaf injection of DEX. The DTA transcripts were induced by 5 µM DEX and peaked in response to 50 µM DEX at 5 days after leaf injection. Here, a chemical induction system, combined with a toxin gene, were used to successfully control the growth of tobacco axillary buds after topping. The DTA expression system under DEX induction was sensitive and efficient, therefore, can be used to control axillary bud growth and development in tobacco.


Assuntos
Dexametasona/farmacologia , Toxina Diftérica/metabolismo , Regulação da Expressão Gênica de Plantas , Nicotiana/crescimento & desenvolvimento , Fragmentos de Peptídeos/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Anti-Inflamatórios/farmacologia , Toxina Diftérica/genética , Fragmentos de Peptídeos/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/metabolismo
13.
Plant Cell ; 33(2): 381-403, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33709105

RESUMO

Homogalacturonan (HG), a component of pectin, is synthesized in the Golgi apparatus in its fully methylesterified form. It is then secreted into the apoplast where it is typically de-methylesterified by pectin methylesterases (PME). Secretion and de-esterification are critical for normal pectin function, yet the underlying transcriptional regulation mechanisms remain largely unknown. Here, we uncovered a mechanism that fine-tunes the degree of HG de-methylesterification (DM) in the mucilage that surrounds Arabidopsis thaliana seeds. We demonstrate that the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor (TF) ERF4 is a transcriptional repressor that positively regulates HG DM. ERF4 expression is confined to epidermal cells in the early stages of seed coat development. The adhesiveness of the erf4 mutant mucilage was decreased as a result of an increased DM caused by a decrease in PME activity. Molecular and genetic analyses revealed that ERF4 positively regulates HG DM by suppressing the expression of three PME INHIBITOR genes (PMEIs) and SUBTILISIN-LIKE SERINE PROTEASE 1.7 (SBT1.7). ERF4 shares common targets with the TF MYB52, which also regulates pectin DM. Nevertheless, the erf4-2 myb52 double mutant seeds have a wild-type mucilage phenotype. We provide evidence that ERF4 and MYB52 regulate downstream gene expression in an opposite manner by antagonizing each other's DNA-binding ability through a physical interaction. Together, our findings reveal that pectin DM in the seed coat is fine-tuned by an ERF4-MYB52 transcriptional complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Pectinas/metabolismo , Mucilagem Vegetal/metabolismo , Proteínas Repressoras/metabolismo , Sementes/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Adesividade , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Reagentes de Ligações Cruzadas/química , Esterificação , Genes de Plantas , Mutação/genética , Motivos de Nucleotídeos/genética , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Ligação Proteica , Proteínas Repressoras/genética
14.
Plant Physiol Biochem ; 151: 477-485, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32299052

RESUMO

Apart from providing the much-needed strength, plant cell walls define the shape, size and function of cells. As such, there is a constant change in the cell wall dynamics. These are facilitated by various enzymes and proteins. Expansins are a typical example of those cell wall proteins that are involved in cell wall modifications underlying many plant developmental and physiological processes. In this work, we investigated the role of NtEXPA11 gene in tobacco by generating transgenic plants ectopically expressing NtEXPA11 under the control of CaMV35S promoter. Gene expression analysis revealed that although this gene was present in all the studied tissues in WT plants, its transcript levels were highest in the stems, flowers and leaves and lowest in the roots. Following its overexpressing in tobacco, the NtEXPA11-OX plants exhibited an enhanced growth phenotype. Compared to WT plants, these plants demonstrated an increased growth rate which was characterized by a vigorous root system as well as an accelerated growth rate during their early developmental stages. NtEXPA11-OX plants also developed significantly bigger leaves and internode lengths. They exhibited a 57% increase (NtEXPA11-2) and 98% increase (NtEXPA11-19) in leaf area when grown on MS media. Most interestingly, NtEXPA11-OX plants had significantly bigger pith and parenchyma cells compared to their WT counterparts. Furthermore, we noted that NtEXPA11 plays an important role in plant adaptation to stresses as indicated by the improved tolerance to drought and salt stress of the NtEXPA11-OX plants compared to the WT plants.


Assuntos
Expressão Gênica , Nicotiana , Proteínas de Plantas , Estresse Fisiológico , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Nicotiana/genética
15.
Gene ; 741: 144522, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32145329

RESUMO

Virus-induced gene silencing (VIGS) is a transient based reverse genetic tool used to elucidate the function of novel gene in N. benthamiana. In current study, 14 UDP-D-glucuronate 4-epimerase (GAE) family members were identified and their gene structure, phylogeny and expression pattern were analyzed. VIGS system was optimized for the functional characterization of NbGAE6 homologous genes in N. benthamiana. Whilst the GAE family is well-known for the interconversion of UDP-D-GlcA and UDP-D-GalA during pectin synthesis. Our results revealed that the downregulation of these genes significantly reduced the amount of GalA in the homogalacturunan which is the major component of pectin found in primary cell wall. Biphenyl assay and high performance liquid chromatography analysis (HPLC) depicted that the level of 'GalA' monosaccharide reduced to 40-51% in VIGS plants as compared to the wild type plants. Moreover, qRT-PCR also confirmed the downregulation of the NbGAE6 mRNA in VIGS plants. In all, this is the first comprehensive study of the optimization of VIGS system for the provision of rapid silencing of GAE family members in N. benthamiana, eliminating the need of stable transformants.


Assuntos
Proteínas de Arabidopsis/genética , Carboidratos Epimerases/genética , Parede Celular/metabolismo , Nicotiana/genética , Pectinas/genética , Arabidopsis/genética , Parede Celular/genética , Parede Celular/virologia , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Vetores Genéticos/genética , Monossacarídeos/metabolismo , Pectinas/biossíntese , Peptídeos , Vírus de Plantas/genética , RNA Mensageiro/genética , Nicotiana/virologia
16.
Genes (Basel) ; 10(10)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561536

RESUMO

Cell walls are basically complex with dynamic structures that are being involved in several growth and developmental processes, as well as responses to environmental stresses and the defense mechanism. Pectin is secreted into the cell wall in a highly methylesterified form. It is able to perform function after the de-methylesterification by pectin methylesterase (PME). Whereas, the pectin methylesterase inhibitor (PMEI) plays a key role in plant cell wall modification through inhibiting the PME activity. It provides pectin with different levels of degree of methylesterification to affect the cell wall structures and properties. The PME activity was analyzed in six tissues of Sorghum bicolor, and found a high level in the leaf and leaf sheath. PMEI families have been identified in many plant species. Here, a total of 55 pectin methylesterase inhibitor genes (PMEIs) were identified from S. bicolor whole genome, a more detailed annotation of this crop plant as compared to the previous study. Chromosomal localization, gene structures and sequence characterization of the PMEI family were analyzed. Moreover, cis-acting elements analysis revealed that each PMEI gene was regulated by both internal and environmental factors. The expression patterns of each PMEI gene were also clustered according to expression pattern analyzed in 47 tissues under different developmental stages. Furthermore, some SbPMEIs were induced when treated with hormonal and abiotic stress. Taken together, these results laid a strong foundation for further study of the functions of SbPMEIs and pectin modification during plant growth and stress responses of cereal.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Plantas/genética , Sorghum/genética , Parede Celular/metabolismo , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estresse Fisiológico
17.
Int J Mol Sci ; 19(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274323

RESUMO

This review archives the achievements made in the last two decades and presents a brief outline of some significant factors influencing the Agrobacterium-mediated transformation of Sorghum bicolor. Recently, progress in successful transformation has been made for this particular monocot crop through direct DNA delivery method and indirect method via Agrobacterium. However, lower transformation rate still proved to be a bottleneck in genetic modification of sorghum. An efficient Agrobacterium transformation system could be attained by optimizing the preliminary assays, comprising of explant source, growth media, antibiotics, Agrobacterium strains and agro-infection response of callus. The selection of competent strains for genetic transformation is also one of the key factors of consideration. Successful transformation is highly dependent on genome configuration of selected cultivar, where non-tannin genotype proved the best suited. Immature embryos from the field source have higher inherent adaptation chances than that of the greenhouse source. A higher concentration of Agrobacterium may damage the explant source. Utilization of anti-necrotic treatments and optimized tissue culture timeframe are the adequate strategies to lower down the effect of phenolic compounds. Appropriate selection of culture media vessels at different stages of tissue culture may also assist in a constructive manner. In conclusion, some aspects such as culture environment with medium composition, explant sources, and genotypes play an indispensable role in successful Agrobacterium-mediated sorghum transformation system.


Assuntos
Agrobacterium tumefaciens/genética , Fenóis/metabolismo , Sorghum/metabolismo , Sorghum/microbiologia , Transformação Genética/genética , Sorghum/genética , Técnicas de Cultura de Tecidos/métodos
18.
Genes (Basel) ; 9(6)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29795009

RESUMO

Xyloglucan endotransglucosylase/hydrolase genes (XTHs) encode enzymes required for the reconstruction and modification of xyloglucan backbones, which will result in changes of cell wall extensibility during growth. A total of 56 NtXTH genes were identified from common tobacco, and 50 cDNA fragments were verified by PCR amplification. The 56 NtXTH genes could be classified into two subfamilies: Group I/II and Group III according to their phylogenetic relationships. The gene structure, chromosomal localization, conserved protein domains prediction, sub-cellular localization of NtXTH proteins and evolutionary relationships among Nicotiana tabacum, Nicotiana sylvestrisis, Nicotiana tomentosiformis, Arabidopsis, and rice were also analyzed. The NtXTHs expression profiles analyzed by the TobEA database and qRT-PCR revealed that NtXTHs display different expression patterns in different tissues. Notably, the expression patterns of 12 NtXTHs responding to environment stresses, including salinity, alkali, heat, chilling, and plant hormones, including IAA and brassinolide, were characterized. All the results would be useful for the function study of NtXTHs during different growth cycles and stresses.

19.
Front Plant Sci ; 9: 1773, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619385

RESUMO

Sorghum (Sorghum bicolor) is an important bioenergy crop. Its biomass mainly consists of the cellulosic and non-cellulosic polysaccharides, both which can be converted to biofuels. The biosynthesis of non-cellulosic polysaccharides involves several glycosyltransferases (GT) families including GT47. However, there was no systemic study on GT47 family in sorghum to date. Here, we identified 39 sorghum GT47 family members and showed the functional divergences of MURUS3 (MUR3) homologs. Sorghum GT47 proteins were phylogenetically clustered into four distinct subfamilies. Within each subfamily, gene structure was relatively conserved between the members. Ten gene pairs were identified from the 39 GT47 genes, of which two pairs might be originated from tandem duplication. 25.6% (10/39) of sorghum GT47 genes were homologous to Arabidopsis MUR3, a xyloglucan biosynthesis gene in primary cell walls. SbGT47_2, SbGT47_7, and SbGT47_8, three most homologous genes of MUR3, exhibited different tissue expression patterns and were selected for complementation into Arabidopsis mur3-3. Physiological and cell wall analyses showed that SbGT47_2 and SbGT47_7 may be two functional xyloglucan galactosyltransferases in sorghum. Further studies found that MUR3-like genes are widely present in the seed plants but not in the chlorophytic alga Chlamydomonas reinhardtii. Our results provide novel information for evolutionary analysis and functional dissection of sorghum GT47 family members.

20.
Mol Genet Genomics ; 291(5): 1891-907, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27329217

RESUMO

Expansins are pH-dependent cell wall loosening proteins which form a large family in plants. They have been shown to be involved in various developmental processes and been implicated in enabling plants' ability to absorb nutrients from the soil as well as conferring biotic and abiotic stress resistances. It is therefore clear that they can be potential targets in genetic engineering for crop improvement. Tobacco (Nicotiana tabacum) is a major crop species as well as a model organism. Considering that only a few tobacco expansins have been studied, a genome-wide analysis of the tobacco expansin gene family is necessary. In this study, we identified 52 expansins in tobacco, which were classified into four subfamilies: 36 NtEXPAs, 6 NtEXPBs, 3 NtEXLAs and 7 NtEXLBs. Compared to other species, the NtEXLB subfamily size was relatively larger. Phylogenetic analysis showed that the 52 tobacco expansins were divided into 13 subgroups. Gene structure analysis revealed that genes within subfamilies/subgroups exhibited similar characteristics such as gene structure and protein motif arrangement. Whole-genome duplication and tandem duplication events may have played important roles in the expanding of tobacco expansins. Cis-Acting element analysis revealed that each expansin gene was regulated or several expansin genes were co-regulated by both internal and environmental factors. 35 of these genes were identified as being expressed according to a microarray analysis. In contrast to most NtEXPAs which had higher expression levels in young organs, NtEXLAs and NtEXLBs were preferentially expressed in mature or senescent tissues, suggesting that they might play different roles in different organs or at different developmental stages. As the first step towards genome-wide analysis of the tobacco expansin gene family, our work provides solid background information related to structure, evolution and expression as well as regulatory cis-acting elements of the tobacco expansins. This information will provide a strong foundation for cloning and functional exploration of expansin genes in tobacco.


Assuntos
Perfilação da Expressão Gênica/métodos , Nicotiana/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Distribuição Tecidual , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...