Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 287: 104971, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467889

RESUMO

Epidermolytic palmoplantar keratoderma (EPPK), a highly penetrant autosomal dominant genodermatosis, is characterized by diffuse keratoses on palmplantar epidermis. The keratin 9 gene (KRT9) is responsible for EPPK. To date, phenotypic therapy is the primary treatment for EPPK. Because KRT9 pairs with a type II keratin-binding partner to function in epidermis, identifying the interaction partner is an essential first step in revealing EPPK pathogenesis and its fundamental treatment. In this study, we proved that keratin 6C (KRT6C) is a probable hereterodimer partner for KRT9. In silico model for KRT6C/KRT9 shows a typical coiled-coil structure in their 2B domains. Proteomics analysis shows that KRT6C/KRT9 pair is in a densely connected protein-protein interaction network, where proteins participate jointly in regulating cytoskeleton organization and keratinization. This study shows that co-immunoprecipitation coupled with mass spectroscopy and proteomics analysis provide a sensitive approach, which compensates for inevitable inadequacies of anti-keratin 6C antibody and helps discover the probable hereterodimer partner KRT6C for KRT9. The acknowledgement of KRT6C/KRT9 pairwise relationship may help re-classify EPPK and PC-K6c (a milder form of pachyonychia congenita, caused by KRT6C) as a group of hereditary defects at a molecular-based level, and lay foundation for deciphering the keratin network contributing to EPPK and PC-K6c. SIGNIFICANCE OF THE STUDY: What is already known about this topic? KRT9 and KRT6C are disease-causing factors for epidermolytic palmoplantar keratoderma (EPPK) and a milder form of pachyonychia congenita (PC-K6c), respectively. EPPK and PC-K6c have some symptom similarities. Keratins are the major structural proteins in epithelial cells. Each of the type I keratin is matched by a particular type II keratin to assemble a coiled-coil heterodimer. The hereterodimer partner for KRT9 is unknown. What does this study add? We discovered and proved that KRT6C is a probable hereterodimer partner for KRT9 in palmplantar epidermis in a native endogenous environment by using co-immunoprecipitation coupled with mass spectroscopy and proteomics analysis, etc. The proteomics analysis shows that KRT6C/KRT9 keratin pair is in a densely connected protein-protein interaction network, where proteins participate jointly in regulating intermediate filament-based cytoskeleton organization and keratinization processes. What are the implications of this work? The new understanding of probable KRT6C/KRT9 pairwise correlation may help re-classify the genetic cutaneous disorders EPPK and PC-K6c as a group of hereditary defects at a molecular-based level, and lay foundation for pathogenic mechanism research in EPPK and PC-K6c. The densely related network components derived from the proteomic data using Metascape in the study and pairwise regulation fashion of specific keratin pairs should attract more attention in the further explorations when investigators concern the physiological functions of keratins and the pathogenesis of related skin diseases.


Assuntos
Ceratodermia Palmar e Plantar Epidermolítica , Paquioníquia Congênita , Humanos , Ceratodermia Palmar e Plantar Epidermolítica/genética , Ceratodermia Palmar e Plantar Epidermolítica/patologia , Proteômica , Epiderme , Queratinas/genética , Queratinas Tipo II/genética , Mutação , Linhagem , Queratina-9/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...