Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Cardiothorac Surg ; 19(1): 569, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354528

RESUMO

OBJECTIVE: This study aimed to develop a prognostic cell death index (CDI) based on the expression of genes related with various types of programmed cell death (PCD), and to assess its clinical relevance in lung squamous cell carcinoma (LUSC). METHODS: PCD-related genes were gathered and analyzed in silico using the transcriptomic data from the LUSC cohorts of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Differentially expressed PCD genes were analyzed, and a prognostic model was subsequently constructed. CDI scores were calculated for each patient, and their correlations with clinical features, survival outcomes, tumor mutation burden, gene clusters, and tumor microenvironment were investigated. Unsupervised consensus clustering was performed based on CDI model genes. Furthermore, the correlation of CDI for sensitivity of targeted drugs, chemotherapy efficacy, and immunotherapy responses was assessed. RESULTS: Based on 351 differentially expressed PCD genes in LUSC, a CDI signature comprising FGA, GAB2, JUN, and CDKN2A was identified. High CDI scores were significantly associated with poor survival outcomes (p < 0.05). Unsupervised clustering revealed three distinct patient subsets with varying survival rates. CDKN2A exhibited significantly different mutation patterns between patients with high and low CDI scores (p < 0.01). High CDI scores were also linked to increased immune cell infiltration of specific subsets and altered expression of immune-related genes. Patients with high-CDI showed reduced sensitivity to several chemotherapeutic drugs and a higher Tumor Immune Dysfunction and Exclusion (TIDE) score, indicating potential resistance to immunotherapy. CONCLUSION: The CDI signature based on PCD genes offers valuable prognostic insights into LUSC, reflecting molecular heterogeneity, immune microenvironment associations, and potential therapeutic challenges. The CDI holds potential clinical utility in predicting treatment responses and guiding the selection of appropriate therapies for patients with LUSC. Future studies are warranted to further validate the prognostic value of CDI in combination with clinical factors and to explore its application across diverse patient cohorts.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Prognóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Masculino , Feminino , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Idoso , Apoptose/genética , Transcriptoma
2.
J Cardiothorac Surg ; 19(1): 580, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354607

RESUMO

BACKGROUND: The aim of this study is to assess the predictive efficacy of real-time three-dimensional echocardiography (RT-3DE) and QRS wave duration in determining the response to cardiac resynchronization therapy (CRT) and assessing left ventricular systolic function pre- and post-CRT device implantation. METHOD: A total of 51 patients with heart failure undergoing CRT at the Second Affiliated Hospital of Nantong University between January 1, 2013, and October 31, 2020, were enrolled in this study. Traditional two-dimensional echocardiography and RT-3DE were performed pre and post-CRT, with QRS wave width data from electrocardiograms and additional clinical information collected. Patients were categorized into CRT responder (n = 36) and CRT non-responder (n = 15) groups based on their response to CRT device implantation. Comparative analyses were conducted on the general characteristics of both groups, as well as the predictive efficacy of RT-3DE and QRS wave width for CRT responsiveness and left ventricular systolic function. Data on the standard deviation (Tmsv16-SD, Tmsv12-SD, Tmsv6-SD) and maximum difference (Tmsv16-Dif, Tmsv12-Dif, Tmsv6-Dif) of left ventricular end-systolic volume (LVESV) at segments 16, 12, and 6, as well as QRS wave width, were collected and analyzed. RESULTS: The indicators Tmsv6-Dif, Tmsv12-Dif, Tmsv16-Dif, Tmsv6-SD, Tmsv12-SD, Tmsv16-SD, and QRS wave width exhibited significantly higher values in the CRT responder group when compared to the CRT non-responder group (P < 0.05). Among these, Tmsv16-SD demonstrated superior predictive performance for post-CRT response, with a sensitivity of 88.9%, specificity of 80.0%, and a diagnostic cut-off value of 6.19%. This predictive capability exceeded that of the conventional indicator, QRS wave width. CONCLUSION: RT-3DE enables accurate prediction of post-CRT patient response and significantly facilitates quantitative assessment of CRT therapy efficacy.


Assuntos
Terapia de Ressincronização Cardíaca , Ecocardiografia Tridimensional , Insuficiência Cardíaca , Humanos , Terapia de Ressincronização Cardíaca/métodos , Masculino , Feminino , Ecocardiografia Tridimensional/métodos , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Função Ventricular Esquerda/fisiologia , Valor Preditivo dos Testes , Resultado do Tratamento , Eletrocardiografia
3.
BMC Cardiovasc Disord ; 24(1): 484, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261826

RESUMO

OBJECTIVES: The purpose of this study was to demonstrate the discriminating predictive indicators in peripheral blood and left atrium blood for predicting the risk of left atrial spontaneous echo contrast (LASEC) in atrial fibrillation patients underwent catheter ablation. METHODS: A total of 108 consecutive AF patients treated with radiofrequency ablation between July 2022 and July 2023 were enrolled and divided into two groups based on preprocedural transesophageal echocardiography: the non LASEC group (n = 71) and the LASEC group (n = 37). Circulating platelet and endothelial- derived MPs (PMPs and EMPs) in peripheral blood and left atrial blood were detected. Plasma soluble P-selectin (sP-selectin) and von Willebrand factor (vWF) were observed. Diagnostic efficiency was measured using receiver operating characteristic (ROC) curve. RESULTS: Peripheral sP-selectin, vWF and EMPs expressions elevated in all subjects when compared to those in left atrium blood. Levels of sP-selectin and vWF were significantly higher in peripheral blood of LASEC group than those of non LASEC group (p = 0.0018,p = 0.0271). Significant accumulations of peripheral PMPs and EMPs were documented in LASEC group by comparison with non LASEC group (p = 0.0395,p = 0.018). The area under curve(AUC) of combined PMPs and sP-selectin in predicting LASEC was 0.769 (95%CI: 0.678-0.845, sensitivity: 86.49%, specificity: 59.15%), significantly larger than PMPs or sP-selectin alone. CONCLUSIONS: Expressions of PMPs, sP-selectin, EMPs and vWF Increased in NVAF patients with LASEC and that might be potential biomarkers for LASEC prediction.


Assuntos
Fibrilação Atrial , Biomarcadores , Ablação por Cateter , Ecocardiografia Transesofagiana , Átrios do Coração , Selectina-P , Valor Preditivo dos Testes , Fator de von Willebrand , Humanos , Fibrilação Atrial/sangue , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Átrios do Coração/diagnóstico por imagem , Selectina-P/sangue , Fator de von Willebrand/metabolismo , Fator de von Willebrand/análise , Biomarcadores/sangue , Idoso , Resultado do Tratamento , Função do Átrio Esquerdo , Fatores de Risco , Medição de Risco
4.
ACS Appl Mater Interfaces ; 16(40): 54049-54057, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39348602

RESUMO

As a high-performance energy storage device consisting of a battery-type anode and a capacitor-type cathode, hybrid lithium-ion capacitors (HLICs) combine the advantages of high energy density of batteries and high power density of capacitors. However, the imbalance in electrochemical kinetics between the battery-type anode and the capacitor-type cathode hinders the further development of HLICs. Fully conjugated covalent organic frameworks have great potential as electrode materials for HLICs due to the designability of their structure. Herein, a fully conjugated covalent triazine framework (PT-CTF) integrating the hexaazatrinaphthylene unit was constructed, which provides abundant active sites (C═N and C═C groups) as the pseudocapacitive anode material for HLICs. And the connection of the triazine unit of PT-CTF improves the molecular conjugate degree, facilitating the transport of electrons. The fabricated PT-CTF||AC HLICs exhibit a high energy density (164.9 Wh kg-1 at 100 mA g-1), large power density (13.1 kW kg-1 at 4 A g-1), and excellent cycling capability (72% after 10 000 cycles at 2 A g-1).

5.
Sensors (Basel) ; 24(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39275410

RESUMO

In this article, the authors present the design of a compact multiband monopole antenna measuring 30 × 10 × 1.6 mm3, which is aimed at optimizing performance across various communication bands, with a particular focus on Wi-Fi and sub-6G bands. These bands include the 2.4 GHz band, the 3.5 GHz band, and the 5-6 GHz band, ensuring versatility in practical applications. Another important point is that this paper demonstrates effective methods for reducing mutual coupling through two meander slits on the common ground, resembling a defected ground structure (DGS) between two antenna elements. This approach achieves mutual coupling suppression from -6.5 dB and -9 dB to -26 dB and -13 dB at 2.46 GHz and 3.47 GHz, respectively. Simulated and measured results are in good agreement, demonstrating significant improvements in isolation and overall multiple-input multiple-output (MIMO) antenna system performance. This research proposes a compact multiband monopole antenna and demonstrates a method to suppress coupling in multiband antennas, making them suitable for internet of things (IoT) sensor devices and Wi-Fi infrastructure systems.

6.
PLoS One ; 19(5): e0303696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787895

RESUMO

Most of the existing low-light image enhancement methods suffer from the problems of detail loss, color distortion and excessive noise. To address the above-mentioned issues, this paper proposes a neural network-based low-light image enhancement network. The network is divided into three parts: decomposition network, reflection component denoising network, and illumination component enhancement network. In the decomposition network, the input image is decomposed into a reflection image and an illumination image. In the reflection component denoising network, the Unet3+ network improved by fusion CA attention is adopted to denoise the reflection image. In the illumination component enhancement network, the adaptive mapping curve is adopted to enhance the illumination image iteratively. Finally, the processed illumination and reflection images are fused based on Retinex theory to obtain the final enhanced image. The experimental results show that the proposed network achieves excellent visual effects in subjective evaluation. Additionally, it shows a significant improvement in objective evaluation metrics, including PSNR, SSIM, NIQE, and so on, when compared to the results in several public datasets.


Assuntos
Iluminação , Redes Neurais de Computação , Iluminação/métodos , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Luz
7.
ACS Appl Mater Interfaces ; 16(20): 26209-26216, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38733341

RESUMO

Thick electrodes with high mass loading and increased content of active materials are critical for achieving higher energy density in contemporary lithium-ion batteries (LIBs). Nonetheless, producing thick electrodes through the commonly used slurry coating technology remains a formidable challenge. In this study, we have addressed this challenge by developing a dry electrode technology by using ultralong multiwalled carbon nanotubes (MWCNT) as a conductive additive and secondary binder. The mixing process of electrode compositions and the fibrillation process of the polytetrafluoroethylene (PTFE) binder were optimized. The resulting LiCoO2 (LCO) electrode exhibited a remarkable mass loading of 48 mg cm-2 and an active material content of 95 wt %. Notably, the thick LCO electrode demonstrated a superior mechanical strength and electrochemical performance. After 100 cycles at a current density of 1/3 C, the electrode still exhibited a capacity retention of 91% of its initial capacity. This dry electrode technology provides a practicable and scalable approach to the powder-to-film LIB electrode manufacturing process.

8.
ACS Appl Mater Interfaces ; 16(14): 17401-17410, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537112

RESUMO

The low ionic conductivity of LiCoO2 limits the rate performance of the overall electrode. Here, a polymeric composite binder composed of poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO) is reported to efficiently improve the ion transport in the LiCoO2 electrode. This is where the lithium-ion transport channel constructed by oxygen atoms of PEO can afford the electrode a lithium-ion transport number (tLi+) as high as 0.70 with the optimized composite binder in a mass ratio of 1:1 (O5F5), significantly higher than that of traditional PVDF (0.44). As a result, the O5F5 binder endows the LiCoO2 electrode with an impressive capacity of 90 mAh g-1 even at 15 C, which is twice as high as the PVDF electrode. In addition, the initial Coulombic efficiency of the LiCoO2 electrode with the O5F5 binder is close to 100% and the capacity retention is 91% after 100 cycles at 1 C. This study overcomes the problem of slow ion conductivity of the LiCoO2 electrode, providing an easy method for developing high-rate cathode binders.

9.
Sensors (Basel) ; 23(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37447702

RESUMO

This paper proposes a common-mode noise suppression filter scheme for use in the servers and computer systems of high-speed buses such as SATA Express, HDMI 2.0, USB 3.2, and PCI Express 5.0. The filter uses a novel series-mushroom-defected corrugated reference plane (SMDCRP) structure. The measured results are similar to the full-wave simulation results. In the frequency domain, the measured insertion loss of the SMDCRP structure filter in differential mode (DM) can be kept below -4.838 dB from DC to 32 GHz and can maintain signal integrity characteristics. The common-mode (CM) suppression performance can suppress more than -10 dB from 8.81 GHz to 32.65 GHz. Fractional bandwidth can be increased to 115%, and CM noise can be ameliorated by 55.2%. In the time domain, using eye diagram verification, the filter shows complete differential signal transmission capability and supports a transmission rate of 32 Gb/s for high-speed buses. The SMDCRP structure filter reduces the electromagnetic interference (EMI) problem and meets the quality requirements for the controllers and sensors used in the server and computer systems of high-speed buses.


Assuntos
Agaricales , Intervenção Coronária Percutânea , Simulação por Computador , Sistemas Computacionais
10.
ACS Appl Mater Interfaces ; 15(29): 34704-34710, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462202

RESUMO

As a new class of crystalline materials, covalent organic frameworks (COFs) have long-range ordered channels and feasibility to functionalize. The well-arranged pores make it possible to contain and transport ions. Here, we designed a novel functionalized anionic COF-SS-Li by a post-synthetic method utilizing the Povarov reaction of BDTA-COF, anchoring -SO3- groups to the COF backbone and converting the imine linkage to a more stable quinoline unit. The grafted -SO3- groups and directional channels can promote the lithium-ion transport through a hopping mechanism. As a solid-state lithium-ion electrolyte, COF-SS-Li exhibits the conductivities of 9.63 × 10-5 S cm-1 at 20 °C and 1.28 × 10-4 S cm-1 at 40 °C and a wide electrochemical window of 4.85 V. The assembled Li|COF-SS-Li|Li symmetric cell can cycle stably for 600 h at 0.1 mA cm-2. Also, the Li|COF-SS-Li|LiFePO4 cell delivers an initial capacity of 117 mAh g-1 at 0.1 A g-1 and retains a capacity rate of 56.7% after 500 cycles. The research enriches the solid-state electrolytes for lithium-ion batteries.

11.
Chem Commun (Camb) ; 59(45): 6853-6856, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191238

RESUMO

A two-dimensional covalent organic framework (NTCDI-COF) with rich redox active sites, high stability and crystallinity was designed and prepared. As a cathode material for lithium-ion batteries (LIBs), NTCDI-COF exhibits excellent electrochemical performance with an outstanding discharge capacity of 210 mA h g-1 at 0.1 A g-1 and high capacity retention of 125 mA h g-1 after 1500 cycles at 2 A g-1. A two-step Li+ insertion/extraction mechanism is proposed based on the ex situ characterization and density functional theory calculation. The constructed NTCDI-COF//graphite full cells can realize a good electrochemical performance.

12.
Sensors (Basel) ; 23(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36679754

RESUMO

In the PCB process, overcoming common-mode noise radiation is critical. In past years, most studies have focused on a common-mode noise filter (CMNF) that can solve electromagnetic interference in high-speed digital systems by blocking and absorbing common-mode noise radiation. Unfortunately, connecting with any reflective common-mode noise filter (R-CMNF) and reducing the area of an absorptive common-mode noise filter (A-CMNF) are the most troublesome tasks in the PCB process. A novel equivalent circuit is proposed in this research to minimize the complexity of the design and improve accuracy. Detailed analyses of this proposed approach are entirely depicted in this article. The experiment result shows that 9% of fractional bandwidth centered at 2.25 Hz can achieve at least 90% absorption efficiency. With our proposed method, the area of A-CMNF is smaller than in state-of-the-art research.


Assuntos
Ruído
13.
ACS Appl Mater Interfaces ; 15(3): 4061-4070, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625342

RESUMO

As a promising candidate for large-scale energy storage, aqueous zinc-ion batteries (ZIBs) still lack cathode materials with large capacity and high rate capability. Herein, a spherical carbon-confined nanovanadium oxynitride with a polycrystalline feature (VNxOy/C) was synthesized by the solvothermal reaction and following nitridation treatment. As a cathode material for ZIBs, it is interesting that the electrochemical performance of the VNxOy/C cathode is greatly improved after the first charging process viain situ electrochemically oxidative activation. The oxidized VNxOy/C delivers a greatly enhanced reversible capacity of 556 mAh g-1 at 0.2 A g-1 compared to the first discharge capacity of 130 mAh g-1 and a high capacity of 168 mAh g-1 even at 80 A g-1. The ex situ characterizations verify that the insertion/extraction of Zn2+ does not affect the crystal structure of oxidized VNxOy/C to promise a stable cycle life (retain 420 mAh g-1 after 1000 cycles at 10 A g-1). The experimental analysis further elucidates that charging voltage and H2O in the electrolyte are curial factors to activate VNxOy/C in that the oxygen replaces the partial nitrogen and creates abundant vacancies, inducing a conversion from VNxOy/C to VNx-mOy+2m/C and then resulting in considerably strengthened rate performance and improved Zn2+ storage capability. The study broadens the horizons of fast ion transport and is exceptionally desirable to expedite the application of high-rate ZIBs.

14.
J Colloid Interface Sci ; 630(Pt B): 144-154, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327718

RESUMO

With the associated advantages of low costs and abundant resources, sodium-ion capacitors (SICs) present a suitable means for large-scale energy storage. However, their practical application is still significantly limited by the sluggish electrochemical reaction kinetics of battery-type anodes. Herein, the nitrogen-doped carbon-encapsulated Fe7Se8 nanorods (Fe7Se8@NC) with a core-shell structure were prepared via an in-situ self-polymerization and carbonization-selenization approach, which improves ion transport and maintains the structural stability of the nanorods. The designed Fe7Se8@NC nanorods exhibit desirable rate capability with a capacity of 290.7 mAh/g at 10 A/g and long-term cyclability with 84.6 % retention over 6000 cycles at 5 A/g. Moreover, research has shown that the diffusion dynamics of Na+ is improved in ether-based electrolytes and that the irreversible reactions at low voltages can be inhibited by a high discharge cut-off voltage. Furthermore, we demonstrated the specific sodium storage mechanism and excellent electrochemical reversibility of the Fe7Se8@NC electrode through in-situ and ex-situ characterization techniques. As expected, the assembled SICs with the Fe7Se8@NC anode and active carbon cathode deliver prominent energy/power densities and an ultra-long cycle life over 5000 cycles, shedding new light on the design of transition metal dichalcogenides as anode materials for advanced energy storage systems.

15.
Small ; 18(44): e2204037, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36127260

RESUMO

All-solid-state batteries (ASSBs) with alloy anodes are expected to achieve high energy density and safety. However, the stability of alloy anodes is largely impeded by their large volume changes during cycling and poor interfacial stability against solid-state electrolytes. Here, a mechanically prelithiation aluminum foil (MP-Al-H) is used as an anode to construct high-performance ASSBs with sulfide electrolyte. The dense Li-Al layer of the MP-Al-H foil acts as a prelithiated anode and forms a 2D interface with sulfide electrolyte, while the unlithiated Al layer acts as a tightly bound current collector and ensures the structural integrity of the electrode. Remarkably, the MP-Al-H anode exhibits superior lithium conduction kinetics and stable interfacial compatibility with Li6 PS5 Cl (LPSCl) and Li10 GeP2 S12 electrolytes. Consequently, the symmetrical cells using LPSCl electrolyte can work at a high current density of 7.5 mA cm-2 and endure for over 1500 h at 1 mA cm-2 . Notably, ≈100% capacity is retained for the MP-Al-H||LPSCl||LiCoO2 full cell with high area loadings of 18 mg cm-2 after 300 cycles. This work offers a pathway to improve the interfacial and performance issues for the application of ASSBs.

16.
ACS Appl Mater Interfaces ; 14(34): 38750-38757, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35976077

RESUMO

Metal single-atom materials have attracted tremendous attention in the research field of lithium-sulfur (Li-S) batteries because they can effectively improve the reaction kinetics of sulfur cathodes. However, it is still difficult to determine the best metal single-atom catalyst for Li-S batteries, due to the lack of a unified measurement and evaluation method. Herein, a series of metal single-atom- and nitrogen-doped graphene materials (M-NG, M = Fe, Co, Ni, Ir, Ru) have been prepared as the catalysts for promoting the reaction kinetics of the sulfur reduction reaction process. Using rotating disk electrode measurements and density functional theory-based theoretical calculations, Ni-NG was screened out to be the best catalyst. It is found that Ni-NG materials can provide a kinetically favorable pathway for the reversible conversion of polysulfide conversion, thus increasing the utilization of sulfur. By coating the Ni-NG materials on the separator as a multifunctional interlayer, a commercially available sulfur cathode presents a stable specific capacity of 701.8 mAh g-1 at a current rate of 0.5C over 400 cycles. Even with a high sulfur loading of 3.8 mg cm-2, a high areal capacity of 4.58 mAh cm-2 can be achieved. This work will provide a fundamental understanding of efficient single-atom catalyst materials for Li-S batteries.

17.
IEEE Trans Biomed Circuits Syst ; 16(4): 664-678, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35853073

RESUMO

A respiratory disorder that attacks COVID-19 patients requires intensive supervision of medical practitioners during the isolation period. A non-contact monitoring device will be a suitable solution for reducing the spread risk of the virus while monitoring the COVID-19 patient. This study uses Frequency-Modulated Continuous Wave (FMCW) radar and Machine Learning (ML) to obtain respiratory information and analyze respiratory signals, respectively. Multiple subjects in a room can be detected simultaneously by calculating the Angle of Arrival (AoA) of the received signal and utilizing the Multiple Input Multiple Output (MIMO) of FMCW radar. Fast Fourier Transform (FFT) and some signal processing are implemented to obtain a breathing waveform. ML helps the system to analyze the respiratory signals automatically. This paper also compares the performance of several ML algorithms such as Multinomial Logistic Regression (MLR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), CatBoosting (CB) Classifier, Multilayer Perceptron (MLP), and three proposed stacked ensemble models, namely Stacked Ensemble Classifier (SEC), Boosting Tree-based Stacked Classifier (BTSC), and Neural Stacked Ensemble Model (NSEM) to obtain the best ML model. The results show that the NSEM algorithm achieves the best performance with 97.1% accuracy. In the real-time implementation, the system could simultaneously detect several objects with different breathing characteristics and classify the respiratory signals into five different classes.


Assuntos
COVID-19 , Radar , Algoritmos , Humanos , Aprendizado de Máquina , Respiração , Processamento de Sinais Assistido por Computador
18.
New Phytol ; 236(3): 1075-1088, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35842781

RESUMO

Flower color, which is determined by various chemical pigments, is a vital trait for ornamental plants, in which anthocyanin is a major component. However, the epigenetic regulation of anthocyanin biosynthesis remains poorly understood. During chrysanthemum cultivation, we found a heterochromatic chrysanthemum accession (YP) whose progeny generated by asexual reproduction contained both yellow-flowered (YP-Y) and pink-flowered (YP-P) plants. In this study, we aimed to elucidate the epigenetic mechanisms of different flower colors in the YP plant progeny. Metabolome and transcriptome analyses revealed that the difference in flower color between YP-Y and YP-P was caused by expression variation of the anthocyanin biosynthesis gene CmMYB6. Bisulfite sequencing revealed that methylation at the CmMYB6 promoter, especially in the CHH context, was higher in YP-Y than YP-P. After demethylation of the CmMYB6 promoter using the dCas9-TET1cd system, the flower color returned from yellow to pink. Furthermore, the methylation status of the CmMYB6 promoter was higher in YP-Y over three consecutive generations, indicating that this methylation status was heritable mitotically. Finally, investigation of other chrysanthemum cultivars showed that the methylation of CmMYB6 decreased gradually with the increase in anthocyanin content. These results lay an epigenetic foundation for the improvement of flower color in horticultural plants.


Assuntos
Chrysanthemum , Antocianinas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Cor , Epigênese Genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
J Exp Bot ; 73(16): 5559-5580, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552695

RESUMO

Unlike modern tomato (Solanum lycopersicum) cultivars, cv. LA1996 harbors the dominant Aft allele, which is associated with anthocyanin synthesis in tomato fruit peel. However, the control of Aft anthocyanin biosynthesis remains unclear. Here, we used ethyl methanesulfonate-induced and CRISPR/Cas9-mediated mutation of LA1996 to show, respectively, that two class IIIf basic helix-loop-helix (bHLH) transcription factors, SlJAF13 and SlAN1, are involved in the control of anthocyanin synthesis. These transcription factors are key components of the MYB-bHLH-WD40 (MBW) complex, which positively regulates anthocyanin synthesis. Molecular and genetic analyses showed that SlJAF13 functions as an upstream activation factor of SlAN1 by binding directly to the G-Box motif of its promoter region. On the other hand, SlJAZ2, a JA signaling repressor, interferes with formation of the MBW complex to suppress anthocyanin synthesis by directly binding these two bHLH components. Unexpectedly, the transcript level of SlJAZ2 was in turn repressed in a SlJAF13-dependent manner. Mechanistically, SlJAF13 interacts with SlMYC2, inhibiting SlMYC2 activation of SlJAZ2 transcription, thus constituting a negative feedback loop governing anthocyanin accumulation. Taken together, our findings support a sophisticated regulatory network, in which SlJAF13 acts as an upstream dual-function regulator that fine tunes anthocyanin biosynthesis in tomato.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Antocianinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(2): 511-515, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35395988

RESUMO

OBJECTIVE: To identify the key genes and explore mechanisms in the development of myelodysplastic syndrome (MDS) by bioinformatics analysis. METHODS: Two cohorts profile datasets of MDS were downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed gene (DEG) was screened by GEO2R, functional annotation of DEG was gained from GO database, gene ontology (GO) enrichment analysis was performed via Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and key genes were screened by Matthews correlation coefficient (MCC) based on STRING database. RESULTS: There were 112 DEGs identified, including 85 up-regulated genes and 27 down-regulated genes. GO enrichment analysis showed that biological processes were mainly enriched in immune response, etc, cellular component in cell membrane, etc, and molecular function in protein binding, etc. KEGG signaling pathway analysis showed that main gene enrichment pathways were primary immunodeficiency, hematopoietic cell lineage, B cell receptor signaling pathway, Hippo signaling pathway, and asthma. Three significant modules were screened by Cytoscape software MCODE plug-in, while 10 key node genes (CD19, CD79A, CD79B, EBF1, VPREB1, IRF4, BLNK, RAG1, POU2AF1, IRF8) in protein-protein interaction (PPI) network were screened based on STRING database. CONCLUSION: These screened key genes and signaling pathways are helpful to better understand molecular mechanism of MDS, and provide theoretical basis for clinical targeted therapy.


Assuntos
Biologia Computacional , Síndromes Mielodisplásicas , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Análise em Microsséries , Síndromes Mielodisplásicas/genética , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA