Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
J Cancer ; 15(14): 4700-4716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006073

RESUMO

Background: Long non-coding RNA (lncRNA), a crucial regulator in breast cancer (BC) development, is intricately linked with cellular senescence. However, there is a lack of cellular senescence-related lncRNAs (CSRLs) signature to evaluate the prognosis of BC patients. Methods: Correlation analysis was conducted to identify lncRNAs associated with cellular senescence. Subsequently, a CSRL signature was crafted in the training cohort. The model's accuracy was evaluated through survival analysis and receiver operating characteristic curves. Furthermore, prognostic nomograms amalgamating cellular senescence and clinical characteristics were devised. Tumor microenvironment and checkpoint disparities were compared between low-risk and high-risk groups. The correlation between these signatures and treatment response in BC patients was also investigated. Finally, functional experiments were conducted for validation. Results: A signature comprising nine CSRLs was devised, which demonstrated adept prognostic capability in BC patients. Functional enrichment analysis revealed that tumor and immune-related pathways were predominantly enriched. Compared to the low-risk group, the high-risk group could benefit more from immunotherapy and certain chemotherapeutic agents. The expression of the 9 CSRLs was validated through in vitro experiments in different subtypes of BC cell lines and tissues. AC098484.1 was specifically verified for its association with senescence-associated secretory phenotypes. Conclusion: The CSRLs signature emerges as a promising prognostic biomarker for BC, with implications for immunological studies and treatment strategies. AC098484.1 has potential relevance in the treatment of BC cell senescence, and these findings improve the clinical treatment levels for BC patients.

2.
J Cancer ; 15(14): 4513-4526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006078

RESUMO

Background: The correlation between hypoxia and tumor development is widely acknowledged. Meanwhile, the foremost organelle affected by hypoxia is mitochondria. This study aims to determine whether they possess prognostic characteristics in lung adenocarcinoma (LUAD). For this purpose, a bioinformatics analysis was conducted to assess hypoxia and mitochondrial scores related genes, resulting in the successful establishment of a prognostic model. Methods: Using the single sample Gene Set Enrichment Analysis algorithm, the hypoxia and mitochondrial scores were computed. Differential expression analysis and weighted correlation network analysis were employed to identify genes associated with hypoxia and mitochondrial scores. Prognosis-related genes were obtained through univariate Cox regression, followed by the establishment of a prognostic model using least absolute shrinkage and selection operator Cox regression. Two independent validation datasets were utilized to verify the accuracy of the prognostic model using receiver operating characteristic and calibration curves. Additionally, a nomogram was employed to illustrate the clinical significance of this study. Results: 318 differentially expressed genes associated with hypoxia and mitochondrial scores were identified for the construction of a prognostic model. The prognostic model based on 16 genes, including PKM, S100A16, RRAS, TUBA4A, PKP3, KCTD12, LPGAT1, ITPRID2, MZT2A, LIFR, PTPRM, LATS2, PDIK1L, GORAB, PCDH7, and CPED1, demonstrates good predictive accuracy for LUAD prognosis. Furthermore, tumor microenvironments analysis and drug sensitivity analysis indicate an association between risk scores and certain immune cells, and a higher risk scores suggesting improved chemotherapy efficacy. Conclusion: The research established a prognostic model consisting of 16 genes, and a nomogram was developed to accurately predict the prognosis of LUAD patients. These findings may contribute to guiding clinical decision-making and treatment selection for patients with LUAD, ultimately leading to improved treatment outcomes.

3.
Front Endocrinol (Lausanne) ; 15: 1385167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948526

RESUMO

Background: Thyroid nodules, increasingly prevalent globally, pose a risk of malignant transformation. Early screening is crucial for management, yet current models focus mainly on ultrasound features. This study explores machine learning for screening using demographic and biochemical indicators. Methods: Analyzing data from 6,102 individuals and 61 variables, we identified 17 key variables to construct models using six machine learning classifiers: Logistic Regression, SVM, Multilayer Perceptron, Random Forest, XGBoost, and LightGBM. Performance was evaluated by accuracy, precision, recall, F1 score, specificity, kappa statistic, and AUC, with internal and external validations assessing generalizability. Shapley values determined feature importance, and Decision Curve Analysis evaluated clinical benefits. Results: Random Forest showed the highest internal validation accuracy (78.3%) and AUC (89.1%). LightGBM demonstrated robust external validation performance. Key factors included age, gender, and urinary iodine levels, with significant clinical benefits at various thresholds. Clinical benefits were observed across various risk thresholds, particularly in ensemble models. Conclusion: Machine learning, particularly ensemble methods, accurately predicts thyroid nodule presence using demographic and biochemical data. This cost-effective strategy offers valuable insights for thyroid health management, aiding in early detection and potentially improving clinical outcomes. These findings enhance our understanding of the key predictors of thyroid nodules and underscore the potential of machine learning in public health applications for early disease screening and prevention.


Assuntos
Aprendizado de Máquina , Nódulo da Glândula Tireoide , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/epidemiologia , Nódulo da Glândula Tireoide/diagnóstico por imagem , Humanos , Feminino , Masculino , China/epidemiologia , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Detecção Precoce de Câncer/métodos , Idoso , Programas de Rastreamento/métodos , Ultrassonografia/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38984525

RESUMO

Novel reprocessable thermosetting adhesives (RTAs), which combine high adhesive strength, reusability, disassembly, and recyclability features, have attracted increasing attention. However, developing RTAs with a rapidly adhesive rate while ensuring high adhesive strength and self-healing ability is still a significant challenge. Here, we prepared a novel vitrimer called DAx-DTSAy, which can be used as an RTA. First, by adjusting the ratio of rigid and flexible segments, maximum tensile strength reached 35.92 MPa. Second, the combined effect of dynamic hydroxyl ester bonds and dynamic disulfide bonds resulted in a rapid stress relaxation behavior, with a complete relaxation time 13.6 times shorter than a vitrimer only cross-linked with hydroxy ester bonds. This feature endowed its good self-healing and reprocessing capabilities. After self-healing at 180 °C, the maximum healing rate of mechanical properties was 91.8%. After three reprocesses, the maximum recovery rate of tensile strength was 120.2%. Furthermore, the combination of rigid and flexible segments and the synergistic effect of dual dynamic covalent bonds made DAx-DTSAy capable of use as a high-performance RTA. The lap shear strength of a DAx-DTSAy film on stainless steel reached 18.18 MPa after 15 min, with a recovery rate of 91.9% after 5 rebonding cycles. Additionally, DAx-DTSAy can be disassembled in chemical agents and exhibited better insulation properties compared to traditional epoxy resins. DAx-DTSAy can be employed as a novel high-performance adhesive in applications such as electronic devices and transportation, contributing to the development of thermosetting adhesives toward recyclability and sustainability.

5.
J Clin Invest ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963708

RESUMO

Cell cycle regulation is largely abnormal in cancers. Molecular understanding and therapeutic targeting of the aberrant cell cycle are essentially meaningful. Here, we identified an under-appreciated Serine/Threonine kinase, CDKL3 (Cyclin-dependent kinase like 3), crucially drives the rapid cell cycle progression and cell growth in cancers. Mechanism-wise, CDKL3 localizes in the nucleus and associates with specific cyclin to directly phosphorylate Retinoblastoma (Rb) for quiescence exit. In parallel, CDKL3 prevents the ubiquitin-proteasomal degradation of CDK4 by direct phosphorylation on T172 to sustain G1 phase advancement. The crucial function of CDKL3 in cancers was demonstrated both in vitro and in vivo. We also designed, synthesized and characterized a first-in-class CDKL3-specific inhibitor, HZ1. HZ1 exhibits greater potency than CDK4/6 (Cyclin-dependent kinase 4/6) inhibitor in pan-cancer treatment by causing cell cycle arrest and overcomes the acquired resistance of the latter. In particular, CDKL3 has significant clinical relevance in colon cancer, and the effectiveness of HZ1 was demonstrated by murine and patient-derived cancer models. Collectively, this work presented an integrated paradigm of cancer cell cycle regulation and suggested CDKL3-targeting as a feasible approach in cancer treatment.

6.
Cancer Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900939

RESUMO

Analysis of extracellular vesicles (EVs) is a promising noninvasive liquid biopsy approach for breast cancer (BC) detection, prognosis, and therapeutic monitoring. A comprehensive understanding of the characteristics and proteomic composition of BC-specific EVs from human samples is required to realize the potential of this strategy. In this study, we applied a mass spectrometry-based, data-independent acquisition (DIA) proteomic approach to characterize human serum EVs derived from patients with BC (n = 126) and healthy donors (HDs, n = 70) in a discovery cohort and validated the findings in five independent cohorts. Examination of the EV proteomes enabled construction of specific EV protein classifiers for diagnosing BC and distinguishing patients with metastatic disease. Of note, TALDO1 was found to be an EV biomarker of distant metastasis of BC. In vitro and in vivo analysis confirmed the role of TALDO1 in stimulating BC invasion and metastasis. Finally, high-throughput molecular docking and virtual screening of a library consisting of 271,380 small molecules identified a potent TALDO1 allosteric inhibitor, AO-022, which could inhibit BC migration in vitro and tumor progression in vivo. Together, this work elucidates the proteomic alterations in the serum EVs of BC patients to guide development of improved diagnosis, monitoring, and treatment strategies.

7.
Orthop Surg ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898370

RESUMO

PURPOSE: Three-level hybrid surgery (HS) consisting of cervical disc arthroplasty (CDA) and anterior cervical discectomy and fusion (ACDF) has been partly used for the treatment of multi-level cervical degenerative disc disease (CDDD). The complications related to the implants and the collapse of the surgical vertebral bodies had been reported in multi-level anterior cervical spine surgery. Thus, this study aimed to explore the biomechanical effects on the prostheses and vertebrae in three-level HS. METHODS: A FE model of cervical spine (C0-T1) was constructed. Five surgical models were developed. They were FAF model (ACDF-CDA-ACDF), AFA model (CDA-ACDF-CDA), FFF model (three-level ACDF), SF model (single-level ACDF), and SA model (single-level CDA). A 75-N follower load and 1.0-N·m moment was applied to produce flexion, extension, lateral bending, and axial rotation. RESULTS: Compared with the intact model, the range of motion (ROM) of total cervical spine in FAF model decreased by 34.54%, 54.48%, 31.76%, and 27.14%, respectively, in flexion, extension, lateral bending, and axial rotation, which were lower than those in FFF model and higher than those in AFA model. The ROMs of CDA segments in FAF and AFA models were similar to the intact model and SA model. Compared with the intact model, the ROMs at C3/4 segment in FFF model increased from 5.71% to 7.85%, and increased from 5.31% to 6.81% at C7/T1 segment, following by FAF model, then the FAF model. The maximum interface pressures of the Prestige-LP in FAF model were similar to SA model, however the corresponding values were increased in AFA model. The maximum interface pressures of the Zero-P were increased in FAF and AFA model compared with those in SF and FFF models. The stress was mainly distributed on the screws. In AFA model, the maximum pressures of the ball and trough articulation in superior and inferior Prestige-LP were all increased compared with those in SA and FAF model. In FFF model, the maximum pressures of the vertebrae were higher than those in other models. The stress was mainly distributed on the anterior area of the vertebral bodies. CONCLUSIONS: HS seemed to be more suitable than ACDF for the surgical treatment of three-level CDDD in consideration of the biomechanical effects, especially for the two-level CDA and one-level ACDF construct. But a more appropriate CDA prosthesis should be explored in the future.

9.
Microbiol Spectr ; : e0420223, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874428

RESUMO

The underlying mechanism of thermotolerance, which is a key virulence factor essential for pathogenic fungi such as Cryptococcus neoformans, is largely unexplored. In this study, our findings suggest that Set302, a homolog of Set3 and a subunit of histone deacetylase complex Set3C, contributes to thermotolerance in C. neoformans. Specifically, the deletion of the predicted Set3C core subunit, Set302, resulted in further reduction in the growth of C. neoformans at 39°C, and survival of transient incubation at 50°C. Transcriptomics analysis revealed that the expression levels of numerous heat stress-responsive genes altered at both 30°C and 39°C due to the lack of Set302. Notably, at 39°C, the absence of Set302 led to the downregulation of gene expression related to the ubiquitin-proteasome system (UPS). Based on the GFP-α-synuclein overexpression model to characterize misfolded proteins, we observed a pronounced accumulation of misfolded GFP-α-synuclein at 39°C, consequently inhibiting C. neoformans thermotolerance. Furthermore, the loss of Set302 exacerbated the accumulation of misfolded GFP-α-synuclein during heat stress. Interestingly, the set302∆ strain exhibited a similar phenotype under proteasome stress as it did at 39°C. Moreover, the absence of Set302 led to reduced production of capsule and melanin. set302∆ strain also displayed significantly reduced pathogenicity and colonization ability compared to the wild-type strain in the murine infection model. Collectively, our findings suggest that Set302 modulates thermotolerance by affecting the degradation of misfolded proteins and multiple virulence factors to mediate the pathogenicity of C. neoformans.IMPORTANCECryptococcus neoformans is a pathogenic fungus that poses a potential and significant threat to public health. Thermotolerance plays a crucial role in the wide distribution in natural environments and host colonization of this fungus. Herein, Set302, a critical core subunit for the integrity of histone deacetylase complex Set3C and widely distributed in various fungi and mammals, governs thermotolerance and affects survival at extreme temperatures as well as the formation of capsule and melanin in C. neoformans. Additionally, Set302 participates in regulating the expression of multiple genes associated with the ubiquitin-proteasome system (UPS). By eliminating misfolded proteins under heat stress, Set302 significantly contributes to the thermotolerance of C. neoformans. Moreover, Set302 regulates the pathogenicity and colonization ability of C. neoformans in a murine model. Overall, this study provides new insight into the mechanism of thermotolerance in C. neoformans.

10.
Cell Death Dis ; 15(6): 416, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879600

RESUMO

Tripartite motif 8 (TRIM8) is an E3 ligase that plays dual roles in various tumor types. The biological effects and underlying mechanism of TRIM8 in hepatocellular carcinoma (HCC) remain unknown. Hepatocyte nuclear factor 1α (HNF1α) is a key transcriptional factor that plays a significant role in regulating hepatocyte differentiation and liver function. The reduced expression of HNF1α is a critical event in the development of HCC, but the underlying mechanism for its degradation remains elusive. In this study, we discovered that the expression of TRIM8 was upregulated in HCC tissues, and was positively correlated with aggressive tumor behavior of HCC and shorter survival of HCC patients. Overexpression of TRIM8 promoted the proliferation, colony formation, invasion, and migration of HCC cells, while TRIM8 knockdown or knockout exerted the opposite effects. RNA sequencing revealed that TRIM8 knockout suppresses several cancer-related pathways, including Wnt/ß-catenin and TGF-ß signaling in HepG2 cells. TRIM8 directly interacts with HNF1α, promoting its degradation by catalyzing polyubiquitination on lysine 197 in HCC cells. Moreover, the cancer-promoting effects of TRIM8 in HCC were abolished by the HNF1α-K197R mutant in vitro and in vivo. These data demonstrated that TRIM8 plays an oncogenic role in HCC progression through mediating the ubiquitination of HNF1α and promoting its protein degradation, and suggests targeting TRIM8-HNF1α may provide a promising therapeutic strategy of HCC.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Fator 1-alfa Nuclear de Hepatócito , Neoplasias Hepáticas , Ubiquitinação , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
11.
Cancer Res ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861363

RESUMO

Colorectal cancer (CRC) is the second most common malignant tumor world-wide. Analysis of the changes that occur during CRC progression could provide insights into the molecular mechanisms driving CRC development and identify improved treatment strategies. Here, we performed an integrated multi-omics analysis of 435 trace-tumor-samples from 148 colorectal cancer (CRC) patients, covering non-tumor (NT), intraepithelial neoplasia (IEN), infiltration (IFT), and advanced-stage CRC (A-CRC) phases. Proteogenomics analyses demonstrated that KRAS and BRAF mutations were mutually exclusive and elevated oxidation phosphorylation in the IEN phase. Chr17q loss and chr20q gain were also mutually exclusive, occurred predominantly in the IEN and IFT phases, respectively, and impacted the cell cycle. Mutation of TP53 was frequent in the A-CRC phase and associated with tumor microenvironment, including increased extracellular matrix rigidity and stromal infiltration. Analysis of the profiles of CRC based on CMS and CRIS classifications revealed the progression paths of each subtype and indicated that microsatellite instability was associated with specific subtype classifications. Additional comparison of molecular characteristics of CRC based on location showed that ANKRD22 amplification by chr10q23.31 gain enhanced glycolysis in the right-sided CRC. The AOM/DSS-induced CRC carcinogenesis mouse model in mice indicated that DDX5 deletion due to chr17q loss promoted CRC development, consistent with the findings from the patient samples. Collectively, this study provides an informative resource for understanding the driving events of different stages of CRC and identifying the potential therapeutic targets.

12.
J Chin Med Assoc ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860774

RESUMO

BACKGROUND: Drug addiction is a social and medical problem that must be urgently addressed. The nucleus accumbens (NAc) is closely related to addiction-related learning memory, and γ-aminobutyric acid type B receptor (GABABR) is a potential target for the treatment of drug addiction. However, the role of GABABR activity levels in the NAc in cocaine addiction is unclear. METHODS: In this study, we established an animal model of cocaine dependence, modulated the level of GABABR activity, applied a conditioned place preference assay (CPP) to assess the role of the NAc in reconsolidation of addiction memory, evaluated learning and memory functions by behavioral experiments, examined the expression of GB1, GB2, CREB, p-CREB, PKA, ERK, and BDNF in the NAc by molecular biology experiments, and screened differentially significantly expressed genes by transcriptome sequencing. RESULTS: Our study showed that the GABAB receptor agonist BLF had a significant effect on locomotor distance in rats, promoted an increase in GABA levels and significantly inhibited the PKA and ERK1/2/CREB/BDNF signaling pathways. Moreover, transcriptome sequencing showed that GABABR antagonist intervention identified a total of 21 upregulated mRNAs and 21 downregulated mRNAs. The DE mRNA genes were mainly enriched in tyrosine metabolism; however, further study is needed. CONCLUSION: GABABR activity in the NAc is involved in the regulation of cocaine addiction and may play an important role through key mRNA pathways.

13.
Front Immunol ; 15: 1369073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855103

RESUMO

FAT1, a substantial transmembrane protein, plays a pivotal role in cellular adhesion and cell signaling. Numerous studies have documented frequent alterations in FAT1 across various cancer types, with its aberrant expression being linked to unfavorable survival rates and tumor progression. In the present investigation, we employed bioinformatic analyses, as well as in vitro and in vivo experiments to elucidate the functional significance of FAT1 in pan-cancer, with a primary focus on lung cancer. Our findings unveiled FAT1 overexpression in diverse cancer types, including lung cancer, concomitant with its association with an unfavorable prognosis. Furthermore, FAT1 is intricately involved in immune-related pathways and demonstrates a strong correlation with the expression of immune checkpoint genes. The suppression of FAT1 in lung cancer cells results in reduced cell proliferation, migration, and invasion. These collective findings suggest that FAT1 has potential utility both as a biomarker and as a therapeutic target for lung cancer.


Assuntos
Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/genética , Animais , Imunoterapia/métodos , Camundongos , Caderinas/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Prognóstico , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Movimento Celular , Biologia Computacional/métodos
14.
J Dig Dis ; 25(4): 255-265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38837552

RESUMO

OBJECTIVES: In this study we aimed to assess the impact of acetylation of hepatocyte nuclear factor 4α (HNF4α) on lysine 458 on the differentiation therapy of hepatocellular carcinoma (HCC). METHODS: Periodic acid-Schiff (PAS) staining, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and senescence-associated ß-galactosidase (SA-ß-gal) activity analysis were performed to assess the differentiation of HCC cells. HNF4α protein was detected by western blot and immunohistochemistry (IHC). The effects of HNF4α-K458 acetylation on HCC malignancy were evaluated in HCC cell lines, a Huh-7 xenograft mouse model, and an orthotopic model. The differential expression genes in Huh-7 xenograft tumors were screened by RNA-sequencing analysis. RESULTS: K458R significantly enhanced the inhibitory effect of HNF4α on the malignancy of HCC cells, whereas K458Q reduced the inhibitory effects of HNF4α. Moreover, K458R promoted, while K458Q decreased, HNF4α-induced HCC cell differentiation. K458R stabilized HNF4α, while K458Q accelerated the degradation of HNF4α via the ubiquitin proteasome system. K458R also enhanced the ability of HNF4α to inhibit cell growth of HCC in the Huh-7 xenograft mouse model and the orthotopic model. RNA-sequencing analysis revealed that inhibiting K458 acetylation enhanced the transcriptional activity of HNF4α without altering the transcriptome induced by HNF4α in HCC. CONCLUSION: Our data revealed that inhibiting K458 acetylation of HNF4α might provide a more promising candidate for differential therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Diferenciação Celular , Fator 4 Nuclear de Hepatócito , Neoplasias Hepáticas , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Acetilação , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Lisina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Microbiol Spectr ; : e0003824, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912819

RESUMO

Cryptococcus neoformans is a life-threatening fungal pathogen that is a causative agent for pulmonary infection and meningoencephalitis in both immunocompetent and immunodeficient individuals. Recent studies have elucidated the important function of the target of rapamycin (TOR) signaling pathway in the modulation of C. neoformans virulence factor production and pathogenicity in animal infection models. Herein, we discovered that Ypk1, a critical component of the TOR signaling pathway, acts as a critical modulator in fungal pathogenicity through post-translational modifications (PTMs). Mass spectrometry analysis revealed that Ypk1 is subject to protein acetylation at lysines 315 and 502, and both sites are located within kinase functional domains. Inhibition of the C. neoformans TOR pathway by rapamycin activates the deacetylation process for Ypk1. The YPK1Q strain, a hyper-acetylation of Ypk1, exhibited increased sensitivity to rapamycin, decreased capsule formation ability, reduced starvation tolerance, and diminished fungal pathogenicity, indicating that deacetylation of Ypk1 is crucial for responding to stress. Deacetylase inhibition assays have shown that sirtuin family proteins are critical to the Ypk1 deacetylation mechanism. After screening deacetylase mutants, we found that Dac1 and Dac7 directly interact with Ypk1 to facilitate the deacetylation modification process via a protein-protein interaction. These findings provide new insights into the molecular basis for regulating the TORC-Ypk1 axis and demonstrate an important function of protein acetylation in modulating fungal pathogenicity. IMPORTANCE: Cryptococcus neoformans is an important opportunistic fungal pathogen in humans. While there are currently few effective antifungal treatments, the absence of novel molecular targets in fungal pathogenicity hinders the development of new drugs. There is increasing evidence that protein post-translational modifications (PTMs) can modulate the pathogenicity of fungi. In this study, we discovered that the pathogenicity of C. neoformans was significantly impacted by the dynamic acetylation changes of Ypk1, the immediate downstream target of the TOR complex. We discovered that Ypk1 is acetylated at lysines 315 and 502, both of which are within kinase functional domains. Deacetylation of Ypk1 is necessary for formation of the capsule structure, the response to the TOR pathway inhibitor rapamycin, nutrient utilization, and host infection. We also demonstrate that the sirtuin protein family is involved in the Ypk1 deacetylation mechanism. We anticipate that the sirtuin-Ypk1 regulation axis could be used as a potential target for the development of antifungal medications.

16.
Front Immunol ; 15: 1415834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933272

RESUMO

Introduction: Bispecific antibodies (BsAbs) can simultaneously target two epitopes of different antigenic targets, bringing possibilities for diversity in antibody drug design and are promising tools for the treatment of cancers and other diseases. T-cell engaging bsAb is an important application of the bispecific antibody, which could promote T cell-mediated tumor cell killing by targeting tumor-associated antigen (TAA) and CD3 at the same time. Methods: This study comprised antibodies purification, Elisa assay for antigen binding, cytotoxicity assays, T cell activation by flow cytometry in vitro and xenogenic tumor model in vivo. Results: We present a novel bsAb platform named PHE-Ig technique to promote cognate heavy chain (HC)-light chain (LC) pairing by replacing the CH1/CL regions of different monoclonal antibodies (mAbs) with the natural A and B chains of PHE1 fragment of Integrin ß2 based on the knob-in-hole (KIH) technology. We had also verified that PHE-Ig technology can be effectively used as a platform to synthesize different desired bsAbs for T-cell immunotherapy. Especially, BCMA×CD3 PHE-Ig bsAbs exhibited robust anti-multiple myeloma (MM) activity in vitro and in vivo. Discussion: Moreover, PHE1 domain was further shortened with D14G and R41S mutations, named PHE-S, and the PHE-S-based BCMA×CD3 bsAbs also showed anti BCMA+ tumor effect in vitro and in vivo, bringing more possibilities for the development and optimization of different bsAbs. To sum up, PHE1-based IgG-like antibody platform for bsAb construction provides a novel strategy for enhanced T-cell immunotherapy.


Assuntos
Anticorpos Biespecíficos , Linfócitos T , Anticorpos Biespecíficos/imunologia , Animais , Humanos , Linfócitos T/imunologia , Camundongos , Imunoglobulina G/imunologia , Imunoterapia/métodos , Linhagem Celular Tumoral , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Ativação Linfocitária/imunologia , Complexo CD3/imunologia , Antígenos de Neoplasias/imunologia
18.
Nat Commun ; 15(1): 3860, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719824

RESUMO

Dual blocker therapy (DBT) has the enhanced antitumor benefits than the monotherapy. Yet, few effective biomarkers are developed to monitor the therapy response. Herein, we investigate the DBT longitudinal plasma proteome profiling including 113 longitudinal samples from 22 patients who received anti-PD1 and anti-CTLA4 DBT therapy. The results show the immune response and cholesterol metabolism are upregulated after the first DBT cycle. Notably, the cholesterol metabolism is activated in the disease non-progressive group (DNP) during the therapy. Correspondingly, the clinical indicator prealbumin (PA), free triiodothyronine (FT3) and triiodothyronine (T3) show significantly positive association with the cholesterol metabolism. Furthermore, by integrating proteome and radiology approach, we observe the high-density lipoprotein partial remodeling are activated in DNP group and identify a candidate biomarker APOC3 that can reflect DBT response. Above, we establish a machine learning model to predict the DBT response and the model performance is validated by an independent cohort with balanced accuracy is 0.96. Thus, the plasma proteome profiling strategy evaluates the alteration of cholesterol metabolism and identifies a panel of biomarkers in DBT.


Assuntos
Colesterol , Proteoma , Humanos , Colesterol/sangue , Colesterol/metabolismo , Proteoma/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/sangue , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/sangue , Biomarcadores/sangue , Idoso , Tri-Iodotironina/sangue , Aprendizado de Máquina , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/sangue , Neoplasias/metabolismo , Proteômica/métodos
19.
Free Radic Biol Med ; 221: 136-154, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763208

RESUMO

Ferroptosis, a novel form of iron-dependent non-apoptotic cell death, plays an active role in the pathogenesis of diverse diseases, including cancer. However, the mechanism through which ferroptosis is regulated in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, our study, via combining bioinformatic analysis with experimental validation, showed that ferroptosis is inhibited in PDAC. Genome-wide sequencing further revealed that the ferroptosis activator imidazole ketone erastin (IKE) induced upregulation of the E3 ubiquitin ligase RBCK1 in PDAC cells at the transcriptional or translational level. RBCK1 depletion or knockdown rendered PDAC cells more vulnerable to IKE-induced ferroptotic death in vitro. In a mouse xenograft model, genetic depletion of RBCK1 increased the killing effects of ferroptosis inducer on PDAC cells. Mechanistically, RBCK1 interacts with and polyubiquitylates mitofusin 2 (MFN2), a key regulator of mitochondrial dynamics, to facilitate its proteasomal degradation under ferroptotic stress, leading to decreased mitochondrial reactive oxygen species (ROS) production and lipid peroxidation. These findings not only provide new insights into the defense mechanisms of PDAC cells against ferroptotic death but also indicate that targeting the RBCK1-MFN2 axis may be a promising option for treating patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Ferroptose , GTP Fosfo-Hidrolases , Neoplasias Pancreáticas , Espécies Reativas de Oxigênio , Ubiquitina-Proteína Ligases , Ferroptose/genética , Humanos , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Proteólise , Ubiquitinação , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Piperazinas , Fatores de Transcrição
20.
Orthop Surg ; 16(7): 1562-1570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38778356

RESUMO

OBJECTIVE: Modic change (MC) is defined as abnormalities observed in the intervertebral disc subchondral and adjacent vertebral endplate subchondral bone changes. Most studies on MC were reported in the lumbar spine and associated with lower back pain. However, MC has been rarely reported in the cervical spine, let alone in those who underwent cervical disc replacement (CDR). This study aimed to focus on MC in the cervical spine and reveal clinical and radiological parameters, especially heterotopic ossification (HO), for patients who underwent CDR. Furthermore, we illustrated the association between MC and HO. METHODS: We retrospectively reviewed patients who underwent CDA from January 2008 to December 2019. The Japanese Orthopaedic Association (JOA), Neck Disability Index (NDI), and Visual Analog Scale (VAS) scores were used to evaluate the clinical outcomes. Radiological evaluations were used to conclude the cervical alignment (CL) and range of motion (ROM) of C2-7, functional spinal unit angle (FSUA), shell angle (SA), FSU height, and HO. Univariate and multivariate logistic regressions were performed to identify the risk factors for HO. The Kaplan-Meier (K-M) method was used to analyze potential risk factors, and multivariate Cox regression was used to identify independent risk factors. RESULTS: A total of 139 patients were evaluated, with a mean follow-up time of 46.53 ± 26.60 months. Forty-nine patients were assigned to the MC group and 90 to the non-MC group. The incidence of MC was 35.3%, with type 2 being the most common. Clinical outcomes (JOA, NDI, VAS) showed no significant difference between the two groups. The differences in C2-7 ROM between the two groups were not significant, while the differences in SA ROM and FSUA ROM were significantly higher in the non-MC than in the MC group (p < 0.05). Besides, FSU height in MC group was significantly lower than that in non-MC group. Parameters concerning CL, including C2-7, FSUA, SA, were not significantly different between the two groups. The incidence of HO and high-grade HO, respectively, in the MC group was 83.7% and 30.6%, while that in the non-MC group was 53.3% and 2.2%, and such differences were significant (p < 0.05). Multivariate logistic regression analyses and Cox regression showed that MC and involved level were significantly associated with HO occurrence (p < 0.05). No implant migration and secondary surgery were observed. CONCLUSION: MC mainly affected the incidence of HO. Preoperative MC was significantly associated with HO formation after CDR and should be identified as a potential risk factor for HO. Rigorous criteria for MC should be taken into consideration when selecting appropriate candidates for CDR.


Assuntos
Vértebras Cervicais , Substituição Total de Disco , Humanos , Masculino , Feminino , Vértebras Cervicais/cirurgia , Vértebras Cervicais/diagnóstico por imagem , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Substituição Total de Disco/métodos , Ossificação Heterotópica/diagnóstico por imagem , Avaliação da Deficiência , Medição da Dor , Degeneração do Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...