Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Diabetes ; 15(5): 898-913, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38766436

RESUMO

BACKGROUND: The understanding of bile acid (BA) and unsaturated fatty acid (UFA) profiles, as well as their dysregulation, remains elusive in individuals with type 2 diabetes mellitus (T2DM) coexisting with non-alcoholic fatty liver disease (NAFLD). Investigating these metabolites could offer valuable insights into the pathophy-siology of NAFLD in T2DM. AIM: To identify potential metabolite biomarkers capable of distinguishing between NAFLD and T2DM. METHODS: A training model was developed involving 399 participants, comprising 113 healthy controls (HCs), 134 individuals with T2DM without NAFLD, and 152 individuals with T2DM and NAFLD. External validation encompassed 172 participants. NAFLD patients were divided based on liver fibrosis scores. The analytical approach employed univariate testing, orthogonal partial least squares-discriminant analysis, logistic regression, receiver operating characteristic curve analysis, and decision curve analysis to pinpoint and assess the diagnostic value of serum biomarkers. RESULTS: Compared to HCs, both T2DM and NAFLD groups exhibited diminished levels of specific BAs. In UFAs, particular acids exhibited a positive correlation with NAFLD risk in T2DM, while the ω-6:ω-3 UFA ratio demonstrated a negative correlation. Levels of α-linolenic acid and γ-linolenic acid were linked to significant liver fibrosis in NAFLD. The validation cohort substantiated the predictive efficacy of these biomarkers for assessing NAFLD risk in T2DM patients. CONCLUSION: This study underscores the connection between altered BA and UFA profiles and the presence of NAFLD in individuals with T2DM, proposing their potential as biomarkers in the pathogenesis of NAFLD.

2.
J Dig Dis ; 24(10): 540-549, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37681235

RESUMO

OBJECTIVES: Fecal microbiota transplantation (FMT) has been recommended for the treatment of recurrent Clostridioides difficile infection (CDI). We aimed to evaluate the therapeutic efficacy and safety of washed microbiota transplantation (WMT), a new method of FMT, for CDI across various medical settings. METHODS: This multicenter real-world cohort study included CDI patients undergoing WMT. The primary outcome was the clinical cure rate of CDI within 8 weeks after WMT. Secondary outcomes included the CDI recurrence rate and reduction in total abdominal symptom score (TASS) during the follow-up period. Adverse events related to WMT were recorded. RESULTS: Altogether 90.7% (49/54) of CDI patients achieved clinical cure after treated with WMT. The cure rate was 83.3% for cases with severe and complicated CDI (ScCDI) (n = 30) and 100% for non-ScCDI cases (n = 24) (P = 0.059). No difference was observed in the clinical cure rate between patients with first and recurrent CDI (91.9% vs 88.2%, P = 0.645). One week post-WMT, TASS showed a remarkable decrease compared to that at baseline (P < 0.001). Totally, 8.2% (4/49) of patients suffered CDI recurrence during the follow-up period. A WHO performance score of 4, age ≥65 years, higher TASS score, and higher Charlson comorbidity index score were potential risk factors for efficacy (P = 0.018, 0.03, 0.01, 0.034, respectively). Four (3.8%) transient adverse events related to WMT were observed. CONCLUSIONS: This study emphasizes the attractive value of WMT for CDI. Early WMT may be recommended for CDI, especially for those in serious condition or with complex comorbidities. TRIAL REGISTRATION: ClinicalTrials.gov, no. NCT03895593 (registered on 27 March 2019).


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbiota , Humanos , Idoso , Resultado do Tratamento , Estudos de Coortes , Recidiva Local de Neoplasia , Infecções por Clostridium/terapia , Transplante de Microbiota Fecal/efeitos adversos , Transplante de Microbiota Fecal/métodos , Recidiva
3.
Acta Pharmacol Sin ; 44(12): 2455-2468, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596398

RESUMO

Renal tubulointerstitial fibrosis (TIF) is considered as the final convergent pathway of diabetic nephropathy (DN) without effective therapies currently. MiRNAs play a key role in fibrotic diseases and become promising therapeutic targets for kidney diseases, while miRNA clusters, formed by the cluster arrangement of miRNAs on chromosomes, can regulate diverse biological functions alone or synergistically. In this study, we developed clustered miR-23a/27a/26a-loaded skeletal muscle satellite cells-derived exosomes (Exos) engineered with RVG peptide, and investigated their therapeutic efficacy in a murine model of DN. Firstly, we showed that miR-23a-3p, miR-26a-5p and miR-27a-3p were markedly decreased in serum samples of DN patients using miRNA sequencing. Meanwhile, we confirmed that miR-23a-3p, miR-26a-5p and miR-27a-3p were primarily located in proximal renal tubules and highly negatively correlated with TIF in db/db mice at 20 weeks of age. We then engineered RVG-miR-23a/27a/26a cluster loaded Exos derived from muscle satellite cells, which not only enhanced the stability of miR-23a/27a/26a cluster, but also efficiently delivered more miR-23a/27a/26a cluster homing to the injured kidney. More importantly, administration of RVG-miR-23a/27a/26a-Exos (100 µg, i.v., once a week for 8 weeks) significantly ameliorated tubular injury and TIF in db/db mice at 20 weeks of age. We revealed that miR-23a/27a/26a-Exos enhanced antifibrotic effects by repressing miRNA cluster-targeting Lpp simultaneously, as well as miR-27a-3p-targeting Zbtb20 and miR-26a-5p-targeting Klhl42, respectively. Knockdown of Lpp by injection of AAV-Lpp-RNAi effectively ameliorated the progression of TIF in DN mice. Taken together, we established a novel kidney-targeting Exo-based delivery system by manipulating the miRNA-23a/27a/26a cluster to ameliorate TIF in DN, thus providing a promising therapeutic strategy for DN.


Assuntos
Nefropatias Diabéticas , Exossomos , MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Humanos , Camundongos , Diabetes Mellitus/terapia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/terapia , Exossomos/metabolismo , Fibrose , MicroRNAs/metabolismo , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Células Satélites de Músculo Esquelético/metabolismo , Complicações do Diabetes/terapia
4.
Front Pharmacol ; 11: 1249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973502

RESUMO

Oral administration of resveratrol is able to ameliorate the progression of diabetic nephropathy (DN); however, its mechanisms of action remain unclear. Recent evidence suggested that the gut microbiota is involved in the metabolism therapeutics. In the current study, we sought to determine whether the anti-DN effects of resveratrol are mediated through modulation of the gut microbiota using the genetic db/db mouse model of DN. We demonstrate that resveratrol treatment of db/db mice relieves a series of clinical indicators of DN. We then show that resveratrol improves intestinal barrier function and ameliorates intestinal permeability and inflammation. The composition of the gut microbiome was significantly altered in db/db mice compared to control db/m mice. Dysbiosis in db/db mice characterized by low abundance levels of Bacteroides, Alistipes, Rikenella, Odoribacter, Parabacteroides, and Alloprevotella genera were reversed by resveratrol treatment, suggesting a potential role for the microbiome in DN progression. Furthermore, fecal microbiota transplantation, derived from healthy resveratrol-treated db/m mice, was sufficient to antagonize the renal dysfunction, rebalance the gut microbiome and improve intestinal permeability and inflammation in recipient db/db mice. These results indicate that resveratrol-mediated changes in the gut microbiome may play an important role in the mechanism of action of resveratrol, which provides supporting evidence for the gut-kidney axis in DN.

5.
Medicine (Baltimore) ; 97(50): e13543, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30558014

RESUMO

RATIONALE: Fecal microbiota transplantation (FMT) has been used in a wide variety of diseases. In this article, we reported a 46-year-old female with diabetic neuropathy (DN) achieved remission by the treatment of FMT. PATIENT CONCERNS: The patient with an 8-year history of diabetes and hypertension was admitted to hospital due to sensitive pain of her right thigh and poor blood glucose control. The traditional hypoglycemic and analgesic treatment were useless to her symptoms. DIAGNOSIS: Diabetic-induced neuropathy was considered. INTERVENTIONS: This patient received twice FMTs for 3 months. OUTCOMES: After twice FMTs, the clinical response of patient was pleasant. The glycemic control was improved, with a remarkable relief of the symptoms of painful DN in particular. No obvious adverse effects were observed during the FMTs and follow-up observation-testing. LESSONS: We proposed that FMT could be a promising treatment in patients with diabetes or diabetes-related complications like DN. FMT also appeared to be definitely safer and more tolerable than the pharmacologic treatment in patients with DN.


Assuntos
Neuropatias Diabéticas/cirurgia , Transplante de Microbiota Fecal/métodos , Neuropatias Diabéticas/microbiologia , Feminino , Humanos , Pessoa de Meia-Idade , Indução de Remissão/métodos
6.
Sci Rep ; 7: 45692, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374806

RESUMO

Podocyte apoptosis coincides with albuminuria onset and precedes podocytopenia in diabetic nephropathy. However, there is a lack of effective therapeutic drugs to protect podocytes from apoptosis. Here, we demonstrated that resveratrol relieved a series of indicators of diabetic nephropathy and attenuated apoptosis of podocytes in db/db diabetic model mice. In addition, resveratrol induced autophagy in both db/db mice and human podocytes. Furthermore, inhibition of autophagy by 3-methyladenine (3-MA) and autophagy gene 5 (Atg5) short hairpin RNA (shRNA) reversed the protective effects of resveratrol on podocytes. Finally, we found that resveratrol might regulate autophagy and apoptosis in db/db mice and podocytes through the suppression of microRNA-383-5p (miR-383-5p). Together, our results indicate that resveratrol effectively attenuates high glucose-induced apoptosis via the activation of autophagy in db/db mice and podocytes, which involves miR-383-5p. Thus, this study reveals a new possible strategy to treat diabetic nephropathy.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/tratamento farmacológico , Podócitos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Estilbenos/farmacologia , Albuminúria/tratamento farmacológico , Albuminúria/genética , Animais , Nefropatias Diabéticas/genética , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Resveratrol
7.
Am J Nephrol ; 31(4): 363-74, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20332614

RESUMO

BACKGROUND: Recent studies suggest the involvement of the adenosine monophosphate-activated serine/threonine protein kinase (AMPK) pathway in the pathogenesis of diabetic nephropathy (DN). Resveratrol, an agent that activates AMPK, may have the potential to protect against the development of DN. This study was designed to investigate the therapeutic effects of resveratrol on renal hypertrophy in early-stage diabetes and the underlying mechanisms. METHOD: Molecular and structural changes involved in the pathogenesis of DN were tested in a rat model of early-stage diabetes. Renal mesangial cells (RMCs) were cultured in media containing different concentrations of glucose with or without resveratrol. Cellular DNA synthesis was assayed by measuring (3)H-thymidine incorporation. The phosphorylation status of AMPK, eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), and phospho- ribosomal protein S6 (S6) was analyzed by Western blot. RESULTS: Resveratrol reduced plasma creatinine and urinary albumin excretion and attenuated renal hypertrophy without affecting blood glucose levels. Moreover, resveratrol activated AMPK and inhibited phosphorylation of 4E-BP1 and S6 in diabetic rat kidneys. In vitro, resveratrol blocked high glucose-induced dephosphorylation of AMPK and phosphorylation of 4E-BP1 and S6 and strongly inhibited both the DNA synthesis and proliferation of RMCs. CONCLUSION: These findings suggest the possibility that resveratrol exerts antiproliferative, antihypertrophic effects by activating AMPK and reducing 4E-BP1 and S6 phosphorylation, thus suppressing the development and progression of DN.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Rim/patologia , Proteínas Quinases/fisiologia , Estilbenos/uso terapêutico , Quinases Proteína-Quinases Ativadas por AMP , Animais , Hipertrofia/prevenção & controle , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Resveratrol , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...