Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(16): 4486-4493, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38634523

RESUMO

Two-dimensional (2D) MXene materials with innovative properties and versatile applications have gained immense popularity among scientists. The green and environmentally friendly Lewis acid salt etching route has opened up immense possibilities for the advancement of 2D MXene materials. In this study, we precisely etched the Al element from the double A-element MAX phases Ti2(SnyAl1-y)C by employing Lewis molten salt guided by redox potentials. This approach led to the discovery of a novel Ti2SnyCClx dual-phase structure consisting of Ti2SnC and Ti2CClx. We then established that the etching of the MAX phase via Lewis acid salt is facilitated by the oxidation of M-site elements, with the MX sublayer acting as an electron transmission conduit to enable the oxidation of A-site elements. This work is dedicated to unraveling the underlying mechanisms governing the etching processes using Lewis molten salt, thereby contributing to a more profound comprehension of these innovative etching routes.

2.
ACS Nano ; 18(14): 10019-10030, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38545930

RESUMO

MAX phases are highly promising materials for electromagnetic (EM) wave absorption because of their specific combination of metal and ceramic properties, making them particularly suitable for harsh environments. However, their higher matching thickness and impedance mismatching can limit their ability to attenuate EM waves. To address this issue, researchers have focused on regulating the electronic structure of MAX phases through structural engineering. In this study, we successfully synthesized a ternary MAX phase known as Sc2GaC MAX with the rare earth element Sc incorporated into the M-site sublayer, resulting in exceptional conductivity and impressive stability at high temperatures. The Sc2GaC demonstrates a strong reflection loss (RL) of -47.7 dB (1.3 mm) and an effective absorption bandwidth (EAB) of 5.28 GHz. It also achieves effective absorption of EM wave energy across a wide frequency range, encompassing the X and Ku bands. This exceptional performance is observed within a thickness range of 1.3 to 2.1 mm, making it significantly superior to other Ga-MAX phases. Furthermore, Sc2GaC exhibited excellent absorption performance even at elevated temperatures. After undergoing oxidation at 800 °C, it achieves a minimum RL of -28.3 dB. Conversely, when treated at 1400 °C under an argon atmosphere, Sc2GaC demonstrates even higher performance, with a minimum RL of -46.1 dB. This study highlights the potential of structural engineering to modify the EM wave absorption performance of the MAX phase by controlling its intrinsic electronic structure.

3.
Behav Sci (Basel) ; 13(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37998634

RESUMO

Rapid economic growth puts the natural environment under tremendous pressure. As a traditional chemical company, it is important to reconsider outdated business development models, develop innovative green initiatives for long-term growth, and choose approaches to address environmental issues. Determining how to encourage employees' green performance while balancing environmental issues is crucial for chemical companies in the current social and economic environment. This study investigates the green transformational leadership style to enhance green performance of chemical company employees. It expands the field of environmental protection by employing two novel constructs: creative process engagement and green creativity. We collected 623 valid questionnaires from 98 teams (98 leaders and 525 employees) and used SPSS 26.0, HLM 6.0, and MPlus 8.3 to test the hypothesis. The findings revealed that (1) green transformational leadership positively influences individual green performance, (2) creative process engagement and green creativity mediate the relationship between green transformational leadership and individual green performance, and (3) individual environmental awareness positively moderates the relationship between green transformational leadership and green creativity. These novel findings contribute to the environmental literature and help chemical company managers in enhancing employee innovation and performance.

4.
Science ; 379(6637): 1130-1135, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927013

RESUMO

Intercalated layered materials offer distinctive properties and serve as precursors for important two-dimensional (2D) materials. However, intercalation of non-van der Waals structures, which can expand the family of 2D materials, is difficult. We report a structural editing protocol for layered carbides (MAX phases) and their 2D derivatives (MXenes). Gap-opening and species-intercalating stages were respectively mediated by chemical scissors and intercalants, which created a large family of MAX phases with unconventional elements and structures, as well as MXenes with versatile terminals. The removal of terminals in MXenes with metal scissors and then the stitching of 2D carbide nanosheets with atom intercalation leads to the reconstruction of MAX phases and a family of metal-intercalated 2D carbides, both of which may drive advances in fields ranging from energy to printed electronics.

5.
J Phys Chem Lett ; 14(2): 481-488, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36625782

RESUMO

The development of abundant, cheap, and highly active catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is important for hydrogen production. Nanolaminate ternary transition metal carbides (MAX phases) and their derived two-dimensional transition metal carbides (MXenes) have attracted considerable interest for electrocatalyst applications. Herein, four new MAX@MXene core-shell structures (Ta2CoC@Ta2CTx, Ta2NiC@Ta2CTx, Nb2CoC@Nb2CTx, and Nb2NiC@Nb2CTx), in which the core region is Co/Ni-MAX phases while the edge region is MXenes, have been prepared. Under alkaline electrolyte conditions, the Ta2CoC@Ta2CTx core-shell structure showed an overpotential of 239 mV and excellent stability during the HER with MXenes as the active sites. For the OER, the Ta2CoC@Ta2CTx core-shell structure showed an overpotential of 373 mV and a small Tafel plot (56 mV dec-1), which maintained a bulk crystalline structure and generated Co-based oxyhydroxides that formed by surface reconstruction as active sites. Considering rich chemical compositions and structures of MAX phases, this work provides a new strategy for designing multifunctional electrocatalysts and also paves the way for further development of MAX phase-based materials for clean energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...