Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol ; 39(6): 3410-3424, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450909

RESUMO

Arecoline, the predominant bioactive substance extracted from areca nut (AN), is the world's fourth most frequently used psychoactive material. Research has revealed that chewing AN can affect the central nervous system (CNS) and may lead to neurocognitive deficits that are possibly linked to the action of arecoline. However, the mechanism behind the neurotoxicity caused by arecoline remains unclear. This study aimed to investigate the neurotoxic effects of arecoline and its underlying mechanism. The results showed that arecoline caused cytotoxicity against HT22 cells in a dose-dependent manner and induced apoptosis by upregulating the expression of pro-apoptotic caspase and Bcl-2 family proteins. Furthermore, arecoline escalated intracellular reactive oxygen species (ROS) levels and Ca2+ concentration with increasing doses, thereby motivating endoplasmic reticulum stress (ERS) and ERS-associated apoptotic protein expression. Additionally, the study found that arecoline attenuates intracellular antioxidant defense by inhibiting the translocation of NF-E2-related factor-2 (Nrf2) into the nucleus and decreasing downstream Heme oxygenase-1 (HO-1) levels. The specific inhibitor Sodium 4-phenylbutyrate (4-PBA) can dramatically attenuate arecoline-mediated cell apoptosis and ERS-associated apoptotic pathway expression by blocking ERS. The antioxidant N-Acetylcysteine (NAC) also effectively reverses the arecoline-mediated increase of ERS-related apoptotic pathway protein levels by scavenging intracellular ROS accumulation. In conclusion, this study suggests that arecoline induces neurotoxicity in HT22 cells via ERS mediated by oxidative stress- and Ca2+ disturbance, as well as by downregulation of the Nrf2/HO-1 pathway.


Assuntos
Apoptose , Arecolina , Estresse do Retículo Endoplasmático , Transdução de Sinais , Animais , Camundongos , Apoptose/efeitos dos fármacos , Arecolina/toxicidade , Cálcio/metabolismo , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Mediators Inflamm ; 2022: 5676256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518880

RESUMO

Hepatic ischemia/reperfusion injury (HIRI) is a common complication of liver surgery requiring hepatic disconnection, such as hepatectomy and liver transplantation. The aim of this study was to investigate the effects of cordycepin on HIRI and to elucidate the underlying mechanisms. Balb/c mice were randomly divided into six groups: a normal control group, sham group, H-cordycepin group, HIRI group, L-cordycepin (25 mg/kg) + HIRI group, and H-cordycepin (50 mg/kg) + HIRI group. Mice were subjected to I/R, and cordycepin was intragastrically administered for seven consecutive days before surgery. Orbital blood and liver specimens were collected at 6 and 24 h after HIRI. Serum levels of ALT and AST were decreased in the cordycepin pretreatment groups. Notably, cordycepin attenuated the inflammatory response and the production of proapoptosis proteins, while increasing expression of antiapoptosis proteins and decreasing expression of autophagy-linked proteins. Furthermore, cordycepin inhibited activation of the MAPK/NF-κB signaling pathway. Collectively, these results indicate that cordycepin pretreatment ameliorated hepatocyte injury caused by HIRI. As compared with the HIRI group, cordycepin pretreatment mitigated the inflammatory response and inhibited apoptosis and autophagy via regulation of the MAPK/NF-κB signaling pathway.


Assuntos
NF-kappa B , Traumatismo por Reperfusão , Animais , Camundongos , Apoptose , Isquemia/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
3.
PPAR Res ; 2022: 8161946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966821

RESUMO

Hepatic ischemia-reperfusion (IR) injury is a clinically significant process that frequently occurs in liver transplantation, partial hepatectomy, and hemorrhagic shock. The aim of this study was to explore the effectiveness of luteolin in hepatic IR injury and the underlying mechanism. BALB/c mice were randomly divided into six groups, including normal controls (NC), luteolin (50 mg/kg), sham procedure, IR+25 mg/kg luteolin, and IR+50 mg/kg luteolin group. Serum and tissue samples were collected at 6 and 24 h after reperfusion to assay liver enzymes, inflammatory factors, expression of proteins associated with apoptosis and autophagy, and factors associated with the extracellular signal-regulated kinase/peroxisome proliferator-activated receptor alpha (ERK/PPARα) pathway. Luteolin preconditioning decreased hepatocyte injury caused by ischemia-reperfusion, downregulated inflammatory factors, and inhibited apoptosis and autophagy. Luteolin also inhibited ERK phosphorylation and activated PPARα.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...