Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(43): e202311909, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37671744

RESUMO

Metal-organic frameworks (MOFs) have been increasingly applied in oxygen evolution reaction (OER), and the surface of MOFs usually undergoes structural transformation to form metal oxyhydroxides to serve as catalytically active sites. However, the controllable regulation of the reconstruction process of MOFs remains as a great challenge. Here we report a defect engineering strategy to facilitate the structural transformation of MOFs to metal oxyhydroxides during OER with enhanced activity. Defective MOFs (denoted as NiFc'x Fc1-x ) with abundant unsaturated metal sites are constructed by mixing ligands of 1,1'-ferrocene dicarboxylic acid (Fc') and defective ferrocene carboxylic acid (Fc). NiFc'x Fc1-x series are more prone to be transformed to metal oxyhydroxides compared with the non-defective MOFs (NiFc'). Moreover, the as-formed metal oxyhydroxides derived from defective MOFs contain more oxygen vacancies. NiFc'Fc grown on nickel foam exhibits excellent OER catalytic activity with an overpotential of 213 mV at the current density of 100 mA cm-2 , superior to that of undefective NiFc'. Experimental results and theoretical calculations suggest that the abundant oxygen vacancies in the derived metal oxyhydroxides facilitate the adsorption of oxygen-containing intermediates on active centers, thus significantly improving the OER activity.

2.
Natl Sci Rev ; 10(3): nwac231, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37051225

RESUMO

The trade-off between the intrinsic activity and electronic conductivity of carbon materials is a major barrier for electrocatalysis. We report a Janus-type carbon material combining electrically conductive nitrogen-doped carbon (NC) and catalytically active boron, nitrogen co-doped carbon (BNC). The integration of NC with BNC can not only ensure high electronic conductivity of the hybrid, but also achieve an enhancement in the intrinsic activity of the BNC side due to the electron redistribution on their coupling interfaces. In the electrocatalytic hydrazine oxidation reaction (HzOR), the Janus carbon electrocatalyst exhibits superior activity than their single counterparts and simple physical mixtures. Density functional theory calculations reveal that the NC/BNC interfaces simultaneously promote efficient electron transport and decrease the free energy of the rate-determining step in the HzOR process.

3.
Adv Mater ; 35(30): e2301894, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37069133

RESUMO

Metal-organic frameworks (MOFs) offer versatile templates/precursors to prepare supported metal catalysts. However, the afforded catalysts usually exhibit microporous structures and unsuitable wettability, which will restrict the accessibility of active sites in liquid-phase reactions. Herein, an etching-functionalization strategy is developed for the construction of a tannic-acid-functionalized MOF with a unique hollow-wall and 3D-ordered macroporous (H-3DOM) structure. The functional MOF can be further employed as an ideal precursor for the synthesis of cobalt supported on oxygen/nitrogen-co-doped carbon composites with H-3DOM structures, and hydrophilic surface. The H-3DOM structure can improve the external surface area to maximize the exposure of active sites. Moreover, the oxygen-containing functional groups can enhance the surface wettability to guarantee the external active sites to be more electrochemically accessible in aqueous electrolyte. Benefitting from these outstanding characteristics, H-3DOM-Co/ONC exhibits high electrocatalytic activity in the oxygen reduction reaction, superior to its counterparts without the hierarchically ordered structure and surface functionalization.

4.
Chem Commun (Camb) ; 55(20): 2924-2927, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30775752

RESUMO

The development of cost-effective and highly efficient multi-functional oxygen reduction reaction and oxygen evolution reaction catalysts has attracted much research attention due to their great potential applications in many advanced clean energy storage and conversion technologies. Herein, highly efficient N-doped three-dimensional porous Co-Co3O4/C nanosheet network materials have been developed as bifunctional electrocatalysts for rechargeable zinc-air batteries.

5.
Chemistry ; 25(11): 2868-2876, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30548500

RESUMO

The development of alternative electrocatalysts exhibiting high activity in the oxygen reduction reaction (ORR) is vital for the deployment of large-scale clean energy devices, such as fuel cells and zinc-air batteries. N-doped carbon materials offer a promising platform for the design and synthesis of electrocatalysts due to their high ORR activity, high surface area, and tunable porosity. In this study, materials in which MnO nanoparticles are entrapped in N-doped mesoporous carbon (MnO/NC) were developed as electrocatalysts for the ORR, and their performances were evaluated in zinc-air batteries. The obtained carbon materials had large surface area and high electrocatalytic activity toward the ORR. The carbon compounds were fabricated by using NaCl as template in a one-pot process, which significantly simplifies the procedure for preparing mesoporous carbon materials and in turn reduces the total cost. A primary zinc-air battery based on this material exhibits an open-circuit voltage of 1.49 V, which is higher than that of conventional zinc-air batteries with Pt/C (Pt/C cell) as ORR catalyst (1.41 V). The assembled zinc-air battery delivered a peak power density of 168 mW cm-2 at a current density of about 200 mA cm-2 , which is higher than that of an equivalent Pt/C cell (151 mW cm-2 at a current density of ca. 200 mA cm-2 ). The electrocatalytic data revealed that MnO/NC is a promising nonprecious-metal ORR catalyst for practical applications in metal-air batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...