Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 89(3): 256-269, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33032807

RESUMO

BACKGROUND: Neurogranin (Ng), encoded by the schizophrenia risk gene NRGN, is a calmodulin-binding protein enriched in the postsynaptic compartments, and its expression is reduced in the postmortem brains of patients with schizophrenia. Experience-dependent translation of Ng is critical for encoding contextual memory, and Ng regulates developmental plasticity in the primary visual cortex during the critical period. However, the overall impact of Ng on the neuronal signaling that regulates synaptic plasticity is unknown. METHODS: Altered Ng expression was achieved via virus-mediated gene manipulation in mice. The effect on long-term potentiation (LTP) was accessed using spike timing-dependent plasticity protocols. Quantitative phosphoproteomics analyses led to discoveries in significant phosphorylated targets. An identified candidate was examined with high-throughput planar patch clamp and was validated with pharmacological manipulation. RESULTS: Ng bidirectionally modulated LTP in the hippocampus. Decreasing Ng levels significantly affected the phosphorylation pattern of postsynaptic density proteins, including glutamate receptors, GTPases, kinases, RNA binding proteins, selective ion channels, and ionic transporters, some of which highlighted clusters of schizophrenia- and autism-related genes. Hypophosphorylation of NMDA receptor subunit Grin2A, one significant phosphorylated target, resulted in accelerated decay of NMDA receptor currents. Blocking protein phosphatase PP2B activity rescued the accelerated NMDA receptor current decay and the impairment of LTP mediated by Ng knockdown, implicating the requirement of synaptic PP2B activity for the deficits. CONCLUSIONS: Altered Ng levels affect the phosphorylation landscape of neuronal proteins. PP2B activity is required for mediating the deficit in synaptic plasticity caused by decreasing Ng levels, revealing a novel mechanistic link of a schizophrenia risk gene to cognitive deficits.


Assuntos
Neurogranina , Esquizofrenia , Animais , Calmodulina/metabolismo , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração , Camundongos , Neurogranina/genética , Neurogranina/metabolismo , Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética , Sinapses/metabolismo
2.
J Proteome Res ; 19(2): 572-582, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31789524

RESUMO

Advances in protein tagging and mass spectrometry have enabled generation of large quantitative proteome and phosphoproteome data sets, for identifying differentially expressed targets in case-control studies. The power study of statistical tests is critical for designing strategies for effective target identification and control of experimental cost. Here, we develop a simulation framework to generate realistic phospho-peptide data with known changes between cases and controls. Using this framework, we quantify the performance of traditional t-tests, Bayesian tests, and the ranking-by-fold-change test. Bayesian tests, which share variance information among peptides, outperform the traditional t-tests. Although ranking-by-fold-change has similar power as the Bayesian tests, its type I error rate cannot be properly controlled without proper permutation analysis; therefore, simply relying on the ranking likely brings false positives. Two-sample Bayesian tests considering dependencies between intensity and variance are superior for data sets with complex variance. While increasing the sample size enhances the statistical tests' performance, balanced controls and cases are recommended over a one-side weighted group. Further, higher peptide standard deviations require higher fold changes to achieve the same statistical power. Together, these results highlight the importance of model-informed experimental design and principled statistical analyses when working with large-scale proteomics and phosphoproteomics data.


Assuntos
Biologia Computacional/métodos , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Teorema de Bayes , Simulação por Computador , Interpretação Estatística de Dados , Modelos Estatísticos , Peptídeos/metabolismo , Tamanho da Amostra
3.
eNeuro ; 4(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250591

RESUMO

Shank proteins, one of the principal scaffolds in the postsynaptic density (PSD) of the glutamatergic synapses, have been associated with autism spectrum disorders and neuropsychiatric diseases. However, it is not known whether different Shank family proteins have distinct functions in regulating synaptic transmission, and how they differ from other scaffold proteins in this aspect. Here, we investigate the role of Shanks in regulating glutamatergic synaptic transmission at rat hippocampal SC-CA1 synapses, using lentivirus-mediated knockdown and molecular replacement combined with dual whole-cell patch clamp in hippocampal slice culture. In line with previous findings regarding PSD-MAGUK scaffold manipulation, we found that loss of scaffold proteins via knockdown of Shank1 or Shank2, but not Shank3, led to a reduction of the number but not the unitary response of AMPAR-containing synapses. Only when both Shank1 and Shank2 were knocked down, were both the number and the unitary response of active synapses reduced. This reduction was accompanied by a decrease in NMDAR-mediated synaptic response, indicating more profound deficits in synaptic transmission. Molecular replacement with Shank2 and Shank3c rescued the synaptic transmission to the basal level, and the intact sterile α-motif (SAM) of Shank proteins is required for maintaining glutamatergic synaptic transmission. We also found that altered neural activity did not influence the effect of Shank1 or Shank2 knockdown on AMPAR synaptic transmission, in direct contrast to the activity dependence of the effect of PSD-95 knockdown, revealing differential interaction between activity-dependent signaling and scaffold protein families in regulating synaptic AMPAR function.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Região CA1 Hipocampal/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Técnicas de Silenciamento de Genes , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Isoformas de Proteínas , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...