Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Burns Trauma ; 10: tkac019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910193

RESUMO

Background: Most traditional wound dressings only partially meet the needs of wound healing because of their single function. Patients usually suffer from the increasing cost of treatment and pain resulting from the frequent changing of wound dressings. Herein, we have developed a mutifunctional cryogel to promote bacterial infected wound healing based on a biocompatible polysaccharide. Methods: The multifunctional cryogel is made up of a compositive scaffold of chitosan (CS), gelatin (Gel) and tannic acid (TA) and in situ formed silver nanoparticles (Ag NPs). A liver bleeding rat model was used to evaluate the dynamic hemostasis performance of the various cryogels. In order to evaluate the antibacterial properties of the prepared cryogels, gram-positive bacterium Staphylococcus aureus (S. aureus) and gram-negative bacterium Escherichia coli (E. coli) were cultured with the cryogels for 12 h. Meanwhile, S. aureus was introduced to cause bacterial infection in vivo. After treatment for 2 days, the exudates from wound sites were dipped for bacterial colony culture. Subsequently, the anti-inflammatory effect of the various cryogels was evaluated by western blotting and enzyme-linked immunosorbent assay. Finally, full-thickness skin defect models on the back of SD rats were established to assess the wound healing performances of the cryogels. Results: Due to its porous structure, the multifunctional cryogel showed fast liver hemostasis. The introduced Ag NPs endowed the cryogel with an antibacterial efficiency of >99.9% against both S. aureus and E. coli. Benefited from the polyphenol groups of TA, the cryogel could inhibit nuclear factor-κB nuclear translocation and down-regulate inflammatory cytokines for an anti-inflammatory effect. Meanwhile, excessive reactive oxygen species could also be scavenged effectively. Despite the presence of Ag NPs, the cryogel did not show cytotoxicity and hemolysis. Moreover, in vivo experiments demonstrated that the biocompatible cryogel displayed effective bacterial disinfection and accelerated wound healing. Conclusions: The multifunctional cryogel, with fast hemostasis, antibacterial and anti-inflammation properties and the ability to promote cell proliferation could be widely applied as a wound dressing for bacterial infected wound healing.

4.
Int J Biol Macromol ; 208: 760-771, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35364198

RESUMO

Wound dressing is a kind of significant artificial materials for protecting injured tissues and promoting wound healing. However, fabrication of antibacterial wound dressing usually involves tedious procedures and toxic components. Herein, we demonstrate a multifunctional chitosan/silver/tannic acid (CS/Ag/TA) cryogel based on an economic method to block acute hemorrhage and promote wound healing. The prepared CS/Ag/TA cryogel not only performs steady stability and compressibility, but also shows good antibacterial ability for both S. aureus and E. coli. Attributing to TA molecules, the CS/Ag/TA cryogel can effectively scavenge more than 95% of free radicals, showing effective oxidation resistance. Due to the porous structure and positive charge of CS, the prepared cryogel exhibits good hemostatic capability with a hemostasis time less than 20 s. Benefitting from the good biocompatibility and cell proliferation, the CS/Ag/TA cryogel can significantly promote wound repair in the skin incision model. All the results indicated that the greenly fabricated cryogel can be widely applied in clinic for hemostasis and wound healing.


Assuntos
Quitosana , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacologia , Criogéis/química , Escherichia coli , Hemostasia , Prata/farmacologia , Staphylococcus aureus , Taninos/farmacologia , Cicatrização
5.
Int J Biol Macromol ; 194: 644-653, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822832

RESUMO

The healing of defected skin tissue is a complex process, especially for chronic wounds. Poor healing of these wounds may cause extensive suffering and high cost for patients. Traditional wound dressings are typically designed for a single function and they cannot satisfy all requirements for the whole process of wound healing. Therefore, it is necessary to develop new types of wound dressings with multiple functions for wound healing. In particular, adding an antibacterial function has been shown to be of great benefit during tissue repair. Nano­silver is widely used in wound treatment because of various advantages, such as its wide antibacterial spectrum and lower drug resistance. Therefore, wound dressings loaded with nano­silver have attracted widespread attention in wound healing. Naturally derived polysaccharides hold great potential as wound dressings, because of their abundant availability, low prices and good biocompatibility. In this review, nano­silver functionalized polysaccharide-based wound dressings are systematically reviewed, including their preparation methods, antibacterial performances and classification of nano­silver wound dressings. Moreover, the toxicity of nano­silver based wound dressings is discussed and the prospective research direction is elaborated. This review aims to provide readers with an overview of the latest developments in silver nanotechnology, and to provide a little guidance for the research of nano­silver functionalized polysaccharide-based wound dressings.


Assuntos
Antibacterianos/química , Nanotecnologia/métodos , Polissacarídeos/química , Prata/química , Cicatrização , Animais , Bandagens , Humanos
6.
Nat Commun ; 12(1): 5919, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635651

RESUMO

Abnormal activation of epidermal growth factor receptor (EGFR) drives non-small cell lung cancer (NSCLC) development. EGFR mutations-mediated resistance to tyrosine-kinase inhibitors (TKIs) is a major hurdle for NSCLC treatment. Here, we show that F-box protein FBXL2 targets EGFR and EGFR TKI-resistant mutants for proteasome-mediated degradation, resulting in suppression of EGFR-driven NSCLC growth. Reduced FBXL2 expression is associated with poor clinical outcomes of NSCLC patients. Furthermore, we show that glucose-regulated protein 94 (Grp94) protects EGFR from degradation via blockage of FBXL2 binding to EGFR. Moreover, we have identified nebivolol, a clinically used small molecule inhibitor, that can upregulate FBXL2 expression to inhibit EGFR-driven NSCLC growth. Nebivolol in combination with osimertinib or Grp94-inhibitor-1 exhibits strong inhibitory effects on osimertinib-resistant NSCLC. Together, this study demonstrates that the FBXL2-Grp94-EGFR axis plays a critical role in NSCLC development and suggests that targeting FBXL2-Grp94 to destabilize EGFR may represent a putative therapeutic strategy for TKI-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas F-Box/genética , Neoplasias Pulmonares/genética , Glicoproteínas de Membrana/genética , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas F-Box/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Nebivolol/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell Death Dis ; 12(4): 381, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833226

RESUMO

Targeted therapy has greatly improved both survival and prognosis of cancer patients. However, while therapeutic treatment of adenocarcinoma has been advanced greatly, progress in treatment of squamous cell carcinoma (SCC) has been slow and ineffective. Therefore, it is of great importance to decipher mechanisms and identify new drug targets involved in squamous cell carcinoma development. In this study, we demonstrate that E47 plays the distinctive and opposite roles on cell proliferation in adenocarcinoma and squamous cell carcinoma. While E47 suppresses cell proliferation in adenocarcinoma cells, it functions as a oncoprotein to promote cell proliferation and tumor growth of squamous cell carcinoma. Mechanistically, we show that E47 can directly bind to the promoter and transactivate ΔNp63 gene expression in squamous cell carcinoma cells, resulting in upregulation of cyclins D1/E1 and downregulation of p21, and thereby promoting cell proliferation and tumor growth. We further show that expression of E2A (E12/E47) is positively correlated with p63 and that high expression of E2A is associated with poor outcomes in clinical samples of squamous cell carcinoma. These results highlight that the E47-ΔNp63α axis may be potential therapeutic targets for treatment of squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica/genética , Fator 3 de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Carcinoma de Células Escamosas/mortalidade , Humanos , Análise de Sobrevida , Regulação para Cima
8.
PLoS Biol ; 19(2): e3001113, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33626035

RESUMO

Transforming growth factor-ß (TGF-ß) signaling plays a critical role in promoting epithelial-to-mesenchymal transition (EMT), cell migration, invasion, and tumor metastasis. ΔNp63α, the major isoform of p63 protein expressed in epithelial cells, is a key transcriptional regulator of cell adhesion program and functions as a critical metastasis suppressor. It has been documented that the expression of ΔNp63α is tightly controlled by oncogenic signaling and is frequently reduced in advanced cancers. However, whether TGF-ß signaling regulates ΔNp63α expression in promoting metastasis is largely unclear. In this study, we demonstrate that activation of TGF-ß signaling leads to stabilization of E3 ubiquitin ligase FBXO3, which, in turn, targets ΔNp63α for proteasomal degradation in a Smad-independent but Erk-dependent manner. Knockdown of FBXO3 or restoration of ΔNp63α expression effectively rescues TGF-ß-induced EMT, cell motility, and tumor metastasis in vitro and in vivo. Furthermore, clinical analyses reveal a significant correlation among TGF-ß receptor I (TßRI), FBXO3, and p63 protein expression and that high expression of TßRI/FBXO3 and low expression of p63 are associated with poor recurrence-free survival (RFS). Together, these results demonstrate that FBXO3 facilitates ΔNp63α degradation to empower TGF-ß signaling in promoting tumor metastasis and that the TßRI-FBXO3-ΔNp63α axis is critically important in breast cancer development and clinical prognosis. This study suggests that FBXO3 may be a potential therapeutic target for advanced breast cancer treatment.


Assuntos
Neoplasias da Mama/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Células HEK293 , Células HaCaT , Humanos , Metástase Neoplásica/patologia , Isoformas de Proteínas , Proteínas Supressoras de Tumor/metabolismo
9.
Cancers (Basel) ; 12(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549341

RESUMO

Lung cancer stem cells (CSCs) play a pivotal role in tumor development, drug resistance, metastasis and recurrence of lung cancer. Thus, it is of great importance to study the mechanism by which CSCs are regulated. In this study, we demonstrate that the deubiquitinase USP4 is critically important in promoting lung cancer stemness. Silencing of USP4 leads to reduction of Oct4 and Sox2 expression, decreased CD133+ cell population and inhibition of tumorsphere formation. Conversely, ectopic expression of USP4 significantly enhances lung cancer cell stemness, which is effectively rescued by simultaneous silencing of Twist1. Mechanistically, we identified USP4 as a novel deubiquitinase of Twist1. USP4 binds to, deubiquitinates and stabilizes Twist1 protein. Furthermore, we show that USP4 expression is elevated in human lung cancer specimens and is positively correlated with Twist1 expression. High expression of USP4/Twist1 is associated with poor clinical outcomes of lung cancer patients. Together, this study highlights an important role for USP4 in lung cancer stemness and suggests USP4 as a potential target for lung cancer diagnosis and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...