Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Anal Chem ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014979

RESUMO

Traditional visual biosensing platforms rely on color to display detection results, which can be influenced by individual visual abilities, equipment, parameters, and lighting conditions during photo capture. This limitation significantly impedes the advancement of next-generation portable electrochemical biosensors. Therefore, we propose a visual biosensing device that utilizes distance as an indicator, enabling the facile determination of the length of discoloration, which is inversely proportional to the concentration of the target analyte. The separation of the Signal Generation (SG) and Signal Output (SO) regions effectively mitigates potential interference from the sample color. Additionally, the SG region can be disassembled to facilitate electrochemical impedance spectroscopy (EIS) detection in laboratory settings, enabling dual-mode detection. Meanwhile, the utilization of piezoelectric nanogenerators (PENG) empowers the entire point-of-care testing (POCT) sensing device, effectively addressing the issue of a limited battery life. The biosensing device exhibited a satisfactory linear range (EIS mode, 5 pg/L to 5 mg/L; visual mode, 0.5 ng/L to 5 mg/L) and a low limit of detection (EIS mode, 2.3 pg/L; visual mode, 0.14 ng/L) with S/N = 3 for ochratoxin A (OTA) under optimized conditions. The self-powered and cost-effective dual-mode biosensing platform developed for OTA detection offers clear and easily interpretable results, demonstrating a high accuracy in laboratory settings.

2.
Stem Cell Res Ther ; 15(1): 217, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020406

RESUMO

BACKGROUND: Intrauterine adhesions (IUAs) jeopardise uterine function in women, which is a great challenge in the clinic. Previous studies have shown that endometrial perivascular cells (En-PSCs) can improve the healing of scarred uteri and that hydroxysafflor yellow A (HSYA) promotes angiogenesis. The purpose of this study was to observe whether the combination of En-PSCs with HSYA could improve the blood supply and fertility in the rat uterus after full-thickness injury. METHODS: En-PSCs were sorted by flow cytometry, and the effect of HSYA on the proliferation and angiogenesis of the En-PSCs was detected using CCK-8 and tube formation assays. Based on a previously reported rat IUA model, the rat uteri were sham-operated, spontaneously regenerated, or treated with collagen-loaded PBS, collagen-loaded HSYA, collagen-loaded En-PSCs, or collagen-loaded En-PSCs with HSYA, and then collected at both 30 and 90 days postsurgery. HE staining and Masson staining were used to evaluate uterine structure and collagen fibre deposition, and immunohistochemical staining for α-SMA and vWF was used to evaluate myometrial regeneration and neovascularization in each group. A fertility assay was performed to detect the recovery of pregnancy function in each group. RNA-seq was performed to determine the potential mechanism underlying En-PSCs/HSYA treatment. Immunofluorescence, tube formation assays, and Western blot were used to validate the molecular mechanism involved. RESULTS: The transplantation of Collagen/En-PSCs/HSYA markedly promoted uterine repair in rats with full-thickness injury by reducing fibrosis, increasing endometrial thickness, regenerating myometrium, promoting angiogenesis, and facilitated live births. RNA sequencing results suggested that En-PSCs/HSYA activated the NRG1/ErbB4 signaling pathway. In vitro tube formation experiments revealed that the addition of an ErbB inhibitor diminished the tube formation ability of cocultured En-PSCs and HUVECs. Western blot results further showed that elevated levels of NRG1 and ErbB4 proteins were detected in the Collagen/En-PSCs/HSYA group compared to the Collagen/En-PSCs group. These collective results suggested that the beneficial effects of the transplantation of Collagen/En-PSCs/HSYA might be attributed to the modulation of the NRG1/ErbB4 signaling pathway. CONCLUSIONS: The combination of En-PSCs/HSYA facilitated morphological and functional repair in rats with full-thickness uterine injury and may promote endometrial angiogenesis by regulating the NRG1/ErbB4 signaling pathway.


Assuntos
Chalcona , Endométrio , Quinonas , Útero , Animais , Feminino , Ratos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Humanos , Útero/efeitos dos fármacos , Útero/metabolismo , Chalcona/análogos & derivados , Chalcona/farmacologia , Quinonas/farmacologia , Quinonas/uso terapêutico , Ratos Sprague-Dawley , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Transplante de Células-Tronco/métodos , Proliferação de Células/efeitos dos fármacos , Regeneração/efeitos dos fármacos
3.
Anal Chem ; 96(25): 10391-10398, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38844882

RESUMO

DNA-templated silver nanoclusters (AgNCs-DNA) can be synthesized via a one-pot method bypassing the tedious process of biomolecular labeling. Appending an aptamer to DNA templates results in dual-functionalized DNA strands that can be utilized for synthesizing aptamer-modified AgNCs, thereby enabling the development of label-free fluorescence aptasensors. However, a major challenge lies in the necessity to redesign the dual-functionalized DNA strand for each specific target, thus increasing the complexity and hindering widespread application of these aptasensors. To overcome this challenge, we designed six DNA strands (DNA1-DNA6) that incorporate the templates for AgNCs synthesis and A4-linker for further aptamer coupling. Among all the synthesized AgNCs-DNA samples, it was found that both AgNCs-DNA1 and AgNCs-DNA2 stood out for their excellent long-term stability. After capturing the T4-linker that connected with aptamer1 specific for aflatoxin B1 (AFB1), however, we found that only AgNCs-DNA1/aptamer1 maintained excellent long-term stability. This finding highlighted the potential of AgNCs-DNA1 as a versatile label-free fluorescence probe for the development of on-demand fluorescence aptasensors. To emphasize its benefits in aptasensing applications, we utilized AgNCs-DNA1/aptamer1 as the fluorescence probe and MoS2 nanosheets as the quencher to develop a FRET aptasensor for AFB1 detection. This aptasensor demonstrated remarkable sensitivity, enabling the detection of AFB1 within a wide concentration range of 0.03-120 ng/mL, with a limit of detection as low as 3.6 pg/mL (S/N = 3). The versatility of the aptasensor has been validated through the recognition of diverse targets, employing aptamer2 specific for ochratoxin A and aptamer3 specific for zearalenone, thereby showcasing its extensive applicability for on-demand detection. The universal applicability of this aptasensor holds great promise for future applications in diverse fields including food safety, environmental monitoring, and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , DNA/química , Espectrometria de Fluorescência , Moldes Genéticos , Prata/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos
4.
Food Chem ; 457: 140190, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38924915

RESUMO

An innovative aptasensor incorporating MoS2-modified bicolor quantum dots and a portable spectrometer, designed for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1) in corn was developed. Carbon dots and CdZnTe quantum dots were as nano-donors to label OTA and AFB1 aptamers, respectively. These labeled aptamers were subsequently attached to MoS2 receptors, enabling fluorescence resonance energy transfer (FRET). With targets, the labeled aptamers detached from the nano-donors, thereby disrupting the FRET process and resulting in fluorescence recovery. Furthermore, a portable dual-mode fluorescence detection system, complemented with customized python-based analysis software, was developed to facilitate rapid and convenient detection using this dual-color FRET aptasensor. The developed host program is connected to the spectrometer and transmits data to the cloud, enabling the device to have Internet of Things (IoT) characteristics. Connected to the cloud, this IoT-enabled device offers convenient and reliable fungal toxin detection for food safety.

5.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891819

RESUMO

Photothermal therapy (PTT) is a promising cancer therapy modality with significant advantages such as precise targeting, convenient drug delivery, better efficacy, and minimal adverse effects. Photothermal therapy effectively absorbs the photothermal transducers in the near-infrared region (NIR), which induces the photothermal effect to work. Although PTT has a better role in tumor therapy, it also suffers from low photothermal conversion efficiency, biosafety, and incomplete tumor elimination. Therefore, the use of nanomaterials themselves as photosensitizers, the targeted modification of nanomaterials to improve targeting efficiency, or the combined use of nanomaterials with other therapies can improve the therapeutic effects and reduce side effects. Notably, noble metal nanomaterials have attracted much attention in PTT because they have strong surface plasmon resonance and an effective absorbance light at specific near-infrared wavelengths. Therefore, they can be used as excellent photosensitizers to mediate photothermal conversion and improve its efficiency. This paper provides a comprehensive review of the key role played by noble metal nanomaterials in tumor photothermal therapy. It also describes the major challenges encountered during the implementation of photothermal therapy.


Assuntos
Nanopartículas Metálicas , Neoplasias , Terapia Fototérmica , Humanos , Terapia Fototérmica/métodos , Neoplasias/terapia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico
6.
Angew Chem Int Ed Engl ; : e202407109, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702296

RESUMO

Obtaining information about cellular interactions is fundamental to the elucidation of physiological and pathological processes. Proximity labeling technologies have been widely used to report cellular interactions in situ; however, the reliance on addition of tag molecules typically restricts their application to regions where tags can readily diffuse, while the application in, for example, solid tissues, is susceptible. Here, we propose an "in-situ-tag-generation mechanism" and develop the GalTag technology based on galactose oxidase (GAO) for recording cellular interactions within three-dimensional biological solid regions. GAO mounted on bait cells can in situ generate bio-orthogonal aldehyde tags as interaction reporters on prey cells. Using GalTag, we monitored the dynamics of cellular interactions and assessed the targeting ability of engineered cells. In particular, we recorded, for the first time, the footprints of Bacillus Calmette-Guérin (BCG) invasion into the bladder tissue of living mice, providing a valuable perspective to elucidate the anti-tumor mechanism of BCG.

7.
Pharmaceutics ; 16(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38794265

RESUMO

Sonodynamic therapy (SDT) has attracted significant attention in recent years as it is an innovative approach to tumor treatment. It involves the utilization of sound waves or ultrasound (US) to activate acoustic sensitizers, enabling targeted drug release for precise tumor treatment. This review aims to provide a comprehensive overview of SDT, encompassing its underlying principles and therapeutic mechanisms, the applications of nanomaterials, and potential synergies with combination therapies. The review begins by introducing the fundamental principle of SDT and delving into the intricate mechanisms through which it facilitates tumor treatment. A detailed analysis is presented, outlining how SDT effectively destroys tumor cells by modulating drug release mechanisms. Subsequently, this review explores the diverse range of nanomaterials utilized in SDT applications and highlights their specific contributions to enhancing treatment outcomes. Furthermore, the potential to combine SDT with other therapeutic modalities such as photothermal therapy (PTT) and chemotherapy is discussed. These combined approaches aim to synergistically improve therapeutic efficacy while mitigating side effects. In conclusion, SDT emerges as a promising frontier in tumor treatment that offers personalized and effective treatment options with the potential to revolutionize patient care. As research progresses, SDT is poised to play a pivotal role in shaping the future landscape of oncology by providing patients with a broader spectrum of efficacious and tailored treatment options.

8.
Medicine (Baltimore) ; 103(19): e37938, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728512

RESUMO

In recent years, China medical and health services have made great development. However, the management of nursing human resources in operating room of primary hospitals still faces a series of challenges. In the nursing work of operating room, high-quality nursing human resource management is important for improving the efficiency of operating room and ensuring the safety of patients. From January 2022 to December 2022, comprehensive collaborative scheduling and quantitative scoring evaluation methods were carried out in our hospital, and relevant data were collected. The flexible scheduling combined quantitative scoring performance appraisal system and the traditional scheduling plus average distribution performance appraisal system were statistically analyzed and compared in terms of annual surgical cases, annual overtime hours, annual back work hours, annual compensatory rest hours, and average daily working hours. This study was based on 30 medical staff (27 females and 3 males) in the operating room of a primary hospital. The annual operation volume increased by 387 cases compared with before, and the attitudes of patients to the service attitude and preoperative waiting time were significantly improved, reaching more than 95%. In addition, in the survey of surgeons, it was found that their satisfaction with preoperative preparation and operation time was significantly higher than that of the traditional scheduling method, and reached more than 95%. In the survey of nursing staff, it was found that the satisfaction with the traditional scheduling method was about 80%, and the satisfaction directly reached 100% after the comprehensive collaborative scheduling system. Based on the above survey, the satisfaction of nurses, doctors and patients with the new comprehensive collaborative scheduling system has improved compared with before. After the implementation of the comprehensive collaborative scheduling system, the annual surgical volume has increased significantly, and the average daily working hours of nursing staff have decreased. Comprehensive collaborative scheduling is an effective method of nursing human resource management in operating room, which can effectively improve the work efficiency of nurses and the satisfaction of patients, doctors and nurses. In practice, this method needs to be continuously explored and refined to adapt to different application scenarios and requirements.


Assuntos
Salas Cirúrgicas , Admissão e Escalonamento de Pessoal , Humanos , Salas Cirúrgicas/organização & administração , Masculino , Feminino , China , Eficiência Organizacional , Agendamento de Consultas , Recursos Humanos de Enfermagem Hospitalar , Carga de Trabalho
9.
Talanta ; 274: 126024, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583330

RESUMO

The detection of transmissible gastroenteritis virus (TGEV) is of great significance to reduce the loss of pig industry. A LAMP-visualization/PFC self-powered dual-mode output sensor platform was constructed to detect TGEV by combining a simple and intuitive photoelectrochromic material with a highly sensitive PFC self-powered sensing platform without external power supply. The PFC sensing substrate was constructed using CdS nanoparticles modified ZnO NRs (CdS/ZnO NRs) as the photoanode, which exhibited high photoactivity, and Prussian blue (PB) as the cathode. After LAMP reaction on the optical anode, visual signals caused by PB discolorimetry can be detected semi-quantitatively, or PFC power density electrical signals collected by electrochemical workstation can be used. The output power density value is logarithm of TGEV concentration. The linear relationship was good within the detection range of 0.075 fg/µL-7.5 ng/µL, with a detection limit of 0.025 fg/µL (S/N = 3). This multi-signal output sensing platform provides more choices for quantifying TGEV detection results, and the two methods can be mutually verified, which meets the needs of different scenarios and improves the reliability of detection. It has a good effect in the actual sample detection, without the use of expensive and complex instruments, and has a broad application prospect.


Assuntos
Polímeros de Fluorcarboneto , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Vírus da Gastroenterite Transmissível , Óxido de Zinco , Vírus da Gastroenterite Transmissível/isolamento & purificação , Óxido de Zinco/química , Animais , Suínos , Limite de Detecção , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Nanopartículas/química , Sulfetos/química
10.
Inorg Chem ; 63(16): 7356-7363, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38602040

RESUMO

The photoactive material was of significant importance in organic photoelectrochemical transistor (OPECT) bioanalysis as it influences the photoinduced voltage and the µC* product, resulting in a varying sensor sensitivity. The utilization of metal-organic frameworks (MOFs) as photoactive materials in OPECT analysis is promising, yet it remains a grand challenge due to the inherently narrow light absorption range and high electron-hole recombination rate. Herein, Pd NPs were encapsulated as electron acceptors into the Cu-MOF using a double-solvent method, followed by pyrolysis at the proper temperature. After pyrolysis, Cu-MOF transformed into a carbon defect-rich composite of CuO and Cu2O while retaining its high porosity and structural morphology. The resulting carbon defect-rich pyrolysis Cu-MOF (p-Cu-MOF) served as an active support, facilitating the separation of electrons and holes. The photoelectrons trigger the electron transfer of adjacent active metal components and the formation of a Schottky junction between Pd and the MOFs. This effect induces the electron donation from the MOFs. Moreover, Pd/pyrolysis Cu-MOF exhibits significantly higher visible light absorption, better water stability, and higher electrical conductivity compared to Cu-MOF and Pd/Cu-MOF. An OPECT sensor was fabricated by utilizing Pd/p-Cu-MOF as the photoactive material and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the channel material on an integrated laser-etched FTO. The aptamer was used as the recognition element, enabling sensitive and efficient detection of residual isocarbophos.

11.
Chem Commun (Camb) ; 60(34): 4581-4584, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38576349

RESUMO

A study of an integrated OPECT biosensor gate and the EC color-changing region on the same chip was carried out, achieving sensitive detection through bioetching-induced signal changes. Enzymatic bioetching enables specific alkaline phosphatase (ALP) detection by catalyzing the production of CdS, which modulates the channel current and generates a visual signal.


Assuntos
Fosfatase Alcalina , Técnicas Biossensoriais , Técnicas Eletroquímicas , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/análise , Transistores Eletrônicos , Compostos de Cádmio/química , Sulfetos/química , Processos Fotoquímicos
12.
Chem Commun (Camb) ; 60(16): 2200-2203, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299689

RESUMO

A distance-based visual electrochromic biosensing device is proposed. With this device, the naked eye is capable of discerning the distance of discoloration, which exhibits a positive correlation with the concentration of the detected substance.


Assuntos
Técnicas Biossensoriais , Polímeros
13.
Sci Total Environ ; 921: 171085, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387584

RESUMO

The development of both detection and removal technologies for heavy metal ions is of great importance. Most of the existing adsorbents that contain oxygen, nitrogen or sulfur functional groups can remove heavy metals, but achieving both selective detection and removal of a single metal ion is difficult because they bind to a wide range of heavy metal ions. Herein, we selected zeolite imidazolium hydrochloride framework-71 (ZIF-71) with sufficient chlorine functional groups to fabricate magnetic ZIF-71 multifunctional composites (M-ZIF-71). M-ZIF-71 had a large specific surface area, excellent water stability, and good magnetic properties, which made M-ZIF-71 conducive to the separation and recovery of adsorbents and the assembly of electrodes. M-ZIF-71 exhibited high selectivity, wide linear range (1-500 µg/L), and low detection limit (0.32 µg/L) for electrochemical detection of mercury ions (Hg2+). Meanwhile, M-ZIF-71 demonstrated rapid Hg2+ adsorption with a high capacity of 571.2 mg/g and excellent recyclability. The high selectivity for Hg2+ was attributed to the powerful affinity of highly electronegative chlorine and Hg2+. Moreover, XPS spectra demonstrated the interaction between chlorine and Hg2+. This work provides a new inspiration for applications in the targeted monitoring and removal of heavy metal pollution.

14.
Chem Commun (Camb) ; 60(21): 2934-2937, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372635

RESUMO

The synergistic effect between surface metal vacancies and a Schottky junction on enhanced transconductance, and the gating effect of an organic photoelectrochemical transistor was reported.

15.
Adv Healthc Mater ; 13(6): e2303068, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37972286

RESUMO

Premature ovarian failure (POF) features an upward incidence nowadays, and the human umbilical cord mesenchymal stem cells (hUC-MSCs)-derived exosomes (MSC-Exos) have shown applied values in the recovery of ovarian function. Here, a novel exosome-encapsulated microcarrier prepared by microfluidic technology for ovarian repair after chemotherapy damage is presented. The exosomes derived from lipopolysaccharide (LPS)-preconditioned hUC-MSCs are encapsulated with hyaluronic acid methacryloyl (HAMA) via microfluidic electrospray, which is named HAMA/MSC-Exos. Attributing to the biocompatibility and semipermeable property of HAMA, the encapsulated exosomes show great viability and controllable release behavior from HAMA. It is demonstrated that in situ transplantation of HAMA/MSC-Exos can rescue ovarian functions of cyclophosphamide-induced ovarian failure in mice by increasing ovarian volume, improving the number of antral follicles and restoring fertility. It is believed that the transplantation of HAMA/MSC-Exos will provide a new concept for the treatment of POF in clinical practice.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Ácido Hialurônico/farmacologia , Lipopolissacarídeos/farmacologia , Microfluídica
16.
Sci China Life Sci ; 67(1): 113-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37751064

RESUMO

Intrauterine adhesion is a major cause of female reproductive disorders. Although we and others uncontrolled pilot studies showed that treatment with autologous bone marrow stem cells made a few patients with severe intrauterine adhesion obtain live birth, no large sample randomized controlled studies on this therapeutic strategy in such patients have been reported so far. To verify if the therapy of autologous bone marrow stem cells-scaffold is superior to traditional treatment in moderate to severe intrauterine adhesion patients in increasing their ongoing pregnancy rate, we conducted this randomized controlled clinical trial. Totally 195 participants with moderate to severe intrauterine adhesion were screened and 152 of them were randomly assigned in a 1:1 ratio to either group with autologous bone marrow stem cells-scaffold plus Foley balloon catheter or group with only Foley balloon catheter (control group) from February 2016 to January 2020. The per-protocol analysis included 140 participants: 72 in bone marrow stem cells-scaffold group and 68 in control group. The ongoing pregnancy occurred in 45/72 (62.5%) participants in the bone marrow stem cells-scaffold group which was significantly higher than that in the control group (28/68, 41.2%) (RR=1.52, 95%CI 1.08-2.12, P=0.012). The situation was similar in live birth rate (bone marrow stem cells-scaffold group 56.9% (41/72) vs. control group 38.2% (26/68), RR=1.49, 95%CI 1.04-2.14, P=0.027). Compared with control group, participants in bone marrow stem cells-scaffold group showed more menstrual blood volume in the 3rd and 6th cycles and maximal endometrial thickness in the 6th cycle after hysteroscopic adhesiolysis. The incidence of mild placenta accrete was increased in bone marrow stem cells-scaffold group and no severe adverse effects were observed. In conclusion, transplantation of bone marrow stem cells-scaffold into uterine cavities of the participants with moderate to severe intrauterine adhesion increased their ongoing pregnancy and live birth rates, and this therapy was relatively safe.


Assuntos
Doenças Uterinas , Feminino , Humanos , Gravidez , Células da Medula Óssea , Endométrio , Taxa de Gravidez , Aderências Teciduais , Útero
17.
Nat Commun ; 14(1): 8281, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092825

RESUMO

Metabolic oligosaccharide engineering (MOE) is a classical chemical approach to perturb, profile and perceive glycans in physiological systems, but probes upon bioorthogonal reaction require accessibility and the background signal readout makes it challenging to achieve glycan quantification. Here we develop SeMOE, a selenium-based metabolic oligosaccharide engineering strategy that concisely combines elemental analysis and MOE,enabling the mass spectrometric imaging of glycome. We also demonstrate that the new-to-nature SeMOE probes allow for detection, quantitative measurement and visualization of glycans in diverse biological contexts. We also show that chemical reporters on conventional MOE can be integrated into a bifunctional SeMOE probe to provide multimodality signal readouts. SeMOE thus provides a convenient and simplified method to explore the glyco-world.


Assuntos
Selênio , Polissacarídeos/metabolismo , Oligossacarídeos/metabolismo , Engenharia Metabólica , Espectrometria de Massas
18.
Anal Chim Acta ; 1282: 341921, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37923414

RESUMO

BACKGROUND: Coexisting multiple mycotoxins in food poses severe health risks on humans due to the augmented toxicity. Current multiplex detection methods for mycotoxins have evolved from instrumental analyses to rapid methods based on the specific recognition of antibody/aptamer using different signal transducers. However, nearly all of the reported aptasensors for multiple mycotoxins detection require external labels and can only simultaneous detection of two mycotoxins due to the limitation of distinguishable labels. The tedious labeling process definitely increases the operation complexity and the detection cost. Therefore, rapid method for simultaneous label-free detection of multiple mycotoxins in cereals is urgently needed. RESULTS: A disposable aptasensing chip was designed for simultaneous label-free detection of fumonisin B1 (FB1), aflatoxin B1 (AFB1), zearalenone (ZEN), and ochratoxin A (OTA) in one sample. Specifically, ITO conductive glass was divided into a rectangle (35 × 25 mm) and then etched by laser to set aside the required four ITO working electrodes (6 mm in diameter) with respective conductive channels. Gold nanoparticles were electrodeposited on the working electrodes to provide abundant anchoring sites for thiolated aptamers immobilization. On this basis, a disposable aptasensing chip for simultaneous label-free detection of four common coexisting mycotoxins has been developed, which used electrochemical impedance spectroscopy as transducer to measure direct biorecognition of the aptamer and corresponding target. This aptasensing chip provided wide linear ranges of 5-1000, 10-250, 10-1250, 10-1500 ng/mL for FB1, AFB1, ZEN, OTA, respectively, with the respective detection limit of 2.47, 3.19, 5.38, 4.87 ng/mL (S/N = 3). SIGNIFICANCE AND NOVELTY: This aptasensing chip shows fantastic characteristics of great simplicity and portability, easy operation, and multiple mycotoxins recognition. They are easy to produce on a large scale at low cost and the design concept can be easily expanded to screen a large panel of coexisting targets. This work provides a new avenue for multi-target detection and represents a substantial advance toward food quality and safety monitoring or other fields.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Micotoxinas , Zearalenona , Humanos , Micotoxinas/análise , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Zearalenona/análise , Aflatoxina B1/análise , Aptâmeros de Nucleotídeos/química , Contaminação de Alimentos/análise
19.
Reprod Biol Endocrinol ; 21(1): 103, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907924

RESUMO

BACKGROUND: With advanced maternal age, abnormalities during oocyte meiosis increase significantly. Aneuploidy is an important reason for the reduction in the quality of aged oocytes. However, the molecular mechanism of aneuploidy in aged oocytes is far from understood. Histone acetyltransferase 1 (HAT1) has been reported to be essential for mammalian development and genome stability, and involved in multiple organ aging. Whether HAT1 is involved in ovarian aging and the detailed mechanisms remain to be elucidated. METHODS: The level of HAT1 in aged mice ovaries was detected by immunohistochemical and immunoblotting. To explore the function of HAT1 in the process of mouse oocyte maturation, we used Anacardic Acid (AA) and small interfering RNAs (siRNA) to culture cumulus-oocyte complexes (COCs) from ICR female mice in vitro and gathered statistics of germinal vesicle breakdown (GVBD), the first polar body extrusion (PBE), meiotic defects, aneuploidy, 2-cell embryos formation, and blastocyst formation rate. Moreover, the human granulosa cell (GC)-like line KGN cells were used to investigate the mechanisms of HAT1 in this progress. RESULTS: HAT1 was highly expressed in ovarian granulosa cells (GCs) from young mice and the expression of HAT1 was significantly decreased in aged GCs. AA and siRNAs mediated inhibition of HAT1 in GCs decreased the PBE rate, and increased meiotic defects and aneuploidy in oocytes. Further studies showed that HAT1 could acetylate Forkhead box transcription factor O1 (FoxO1), leading to the translocation of FoxO1 into the nucleus. Resultantly, the translocation of acetylated FoxO1 increased the expression of amphiregulin (AREG) in GCs, which plays a significant role in oocyte meiosis. CONCLUSION: The present study suggests that decreased expression of HAT1 in GCs is a potential reason corresponding to oocyte age-related meiotic defects and provides a potential therapeutic target for clinical intervention to reduce aneuploid oocytes.


Assuntos
Células da Granulosa , Oócitos , Animais , Feminino , Humanos , Camundongos , Aneuploidia , Células da Granulosa/metabolismo , Histona Acetiltransferases/metabolismo , Mamíferos , Meiose/genética , Camundongos Endogâmicos ICR , Oócitos/metabolismo
20.
Inorg Chem ; 62(37): 15022-15030, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37661907

RESUMO

Engineering the activity of enzyme-like catalysts should be a top priority to make them superior substitutes for natural enzymes. Herein, a Ce/Zr bimetal-organic framework (Ce/Zr-MOF) was designed and synthesized by a one-pot hydrothermal method, which has enhanced performance in mimicking peroxidase (POD) than its single-metal counterparts. To further comprehend the mechanism of activity enhancement, the role of the bimetallic synergistic catalysis process in H2O2 decomposition and reactive oxygen species formation was elucidated, and the possible dual cycle synergistic catalysis pathway of bimetallic catalysis is proposed for the first time. The enhanced POD-like activity mainly depends on the introduction of Ce, which improved the conductivity and electron-transfer capability of Ce/Zr-MOF and promoted the generation of •OH. Integrated with a hydrogel substrate, a wearable all-solid-state H2O2 sensor for early diagnosis of plant health was produced. The detection limit can be as low as 3.3 µM, which is lower than that of some instrument-based colorimetric methods and has great potential in the development of visualized sensing applications. The concept of dual cycle synergistic catalysis pathway we proposed not only deepens the comprehension regarding sensing and catalytic mechanisms but also provides novel perspectives into the design of enzyme-like catalysts for extensive usage.


Assuntos
Peroxidase , Dispositivos Eletrônicos Vestíveis , Hidrogéis , Peróxido de Hidrogênio , Peroxidases , Catálise , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...