Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Membr Biol ; 183(1): 33-8, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11547350

RESUMO

The melibiose carrier of Escherichia coli is a cytoplasmic membrane protein that mediates the cotransport of galactosides with H(+), Na(+), or Li(+). In this study we used cysteine-scanning mutagenesis to try to gain information about the position of transmembrane helix VI in the three-dimensional structure of the melibiose carrier. We constructed 23 individual cysteine substitutions in helix VI and an adjacent loop of the carrier. The resulting melibiose carriers retained 22-100% of their ability to transport melibiose. We tested the effect of the hydrophilic sulfhydryl reagent p-chloromercuri-benzenesulfonic acid (PCMBS) on the cysteine-substitution mutants and we found that there was no inhibition of melibiose transport in any of the mutants. We suggest that helix VI is imbedded in phospholipid and does not face the aqueous channel through which melibiose passes.


Assuntos
Proteínas de Membrana/metabolismo , Simportadores/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Cátions , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fenótipo , Simportadores/genética
2.
Biochim Biophys Acta ; 1514(2): 230-8, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11557023

RESUMO

The melibiose carrier of Escherichia coli is a transmembrane protein that comprises 12 transmembrane helices connected by periplasmic and cytoplasmic loops, with both the N- and C-termini located on the cytoplasmic side. Our previous studies of second-site revertants suggested proximity between several helices, including helices XI and I. In this study, we constructed six double cysteine mutants, each having one cysteine in helix I and the other in helix XI: three mutants, K18C/S380C, D19C/S380C, and F20C/S380C, have their cysteine pairs near the cytoplasmic side of the carrier, and the other three, T34C/G395C, D35C/G395C, and V36C/G395C, have their cysteine pairs near the periplasmic side. In the absence of substrate, disulfide formations catalyzed by iodine and copper-(1,10-phenanthroline)(3) indicate that helix I and helix XI are in immediate proximity to each other on the periplasmic side but not on the cytoplasmic side, as shown by protease cleavage analyses. We infer that the two helices are tilted with respect to each other, with the periplasmic sides in close proximity.


Assuntos
Escherichia coli/genética , Sequências Hélice-Alça-Hélice , Proteínas de Membrana Transportadoras/genética , Simportadores , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas , Cisteína/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Mutação
3.
Biochem Biophys Res Commun ; 285(2): 348-54, 2001 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-11444849

RESUMO

The melibiose transport carrier of Escherichia coli (coded by melB gene) is a cotransport system which couples the transport of a-galactosides to protons, sodium, or lithium ions. The charged amino acid residues in membrane-spanning helices are of considerable interest because many of them have important function in substrate recognition. In most cases changing these charged residue to an uncharged residue (cysteine) results in total loss of activity. In this communication we describe experiments in which the cysteine substitution for a charged residue was chemically changed by sulfhydryl reagents (MTSEA and MTSET to restore a positive charge and MTSES a negative charge) or by iodoacetic acid or through oxidation by hydrogen peroxide so as to regain the original negative charge. In two cases (D55C and D124C) the reconstructed negative charges via the oxidation of the thiol to the sulfinic and/or sulfonic acid resulted in partial recovery of transport: D55C up to 27% of the normal and D124C up to 4% of the normal in melibiose accumulation; D55C up to 36% of the normal and D124 up to 4.5% of the normal in downhill transport. Sulfhydryl reagents and iodoacetic acid failed to recover transport in all cases. We infer that the configurations of the charges as well as the structure of the side chains that carry them are critical in the maintenance of the transport.


Assuntos
Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Simportadores , Sequência de Aminoácidos , Substituição de Aminoácidos , Membrana Celular/enzimologia , Membrana Celular/ultraestrutura , Cisteína , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Peróxido de Hidrogênio/farmacologia , Cinética , Melibiose/metabolismo , Proteínas de Membrana Transportadoras/genética , Mesilatos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reagentes de Sulfidrila/farmacologia
4.
Biochemistry ; 40(18): 5506-10, 2001 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-11331015

RESUMO

The melibiose carrier of Escherichia coli is a sugar-cation cotransport system that utilizes Na(+), Li(+), or H(+). This membrane transport protein consists of 12 transmembrane helices. Starting with the cysteine-less melibiose carrier, cysteine has been substituted individually for amino acids 17-37, which includes all of the residues in membrane helix I. The carriers with cysteine substitutions were studied for their transport activity and the effect of the water soluble sulfhydryl reagent p-chloro- mercuribenzenesulfonic acid (PCMBS). Cysteine substitution caused loss of transport activity in six of the mutants (G17C, K18C, D19C, Y32C, T34C, and D35C). PCMBS caused greater than 50% inhibition in eleven mutants (F20C, A21C, I22C, G23C, I24C, V25C, Y26C, M27C, Y28C, M30C, and Y31C). We suggest that the residues whose cysteine derivatives were inhibited by PCMBS face the aqueous channel and that helix I is completely surrounded by aqueous environment. Second site revertants were isolated from K18C and Y31C. The revertants were found to have mutations in helices I, IV, and VII.


Assuntos
Substituição de Aminoácidos/genética , Cisteína/genética , Escherichia coli/metabolismo , Melibiose/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/genética , Simportadores , 4-Cloromercuriobenzenossulfonato/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Cátions Monovalentes/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cisteína/antagonistas & inibidores , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Soros Imunes/metabolismo , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras/antagonistas & inibidores , Proteínas de Membrana Transportadoras/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/genética
5.
Biochim Biophys Acta ; 1505(1): 121-30, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11248194

RESUMO

A variety of sodium-substrate cotransport systems are known in bacteria. Sodium enters the cell down an electrochemical concentration gradient. There is obligatory coupling between the entry of the ion and the entry of substrate with a stoichiometry (in the cases studied) of 1:1. Thus, the downhill movement of sodium ion into the cell leads to the accumulation of substrate within the cell. The melibiose carrier of Escherichia coli is perhaps the most carefully studied of the sodium cotransport systems in bacteria. This carrier is of special interest because it can also use protons or lithium ions for cotransport. Other sodium cotransport carriers that have been studied recently are for proline, glutamate, serine-threonine, citrate and branched chain amino acids.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli , Sódio/metabolismo , Simportadores , Sequência de Aminoácidos , Aminoácidos de Cadeia Ramificada/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Ácido Cítrico/metabolismo , Citoplasma/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática , Glutamatos/metabolismo , Transporte de Íons , Melibiose/metabolismo , Dados de Sequência Molecular , Periplasma/metabolismo , Serina/metabolismo , Especificidade por Substrato , Treonina/metabolismo
6.
Biochim Biophys Acta ; 1509(1-2): 123-30, 2000 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-11118524

RESUMO

Melibiose carrier mutants, isolated by growing cells on melibiose plus the non-metabolizable competitive inhibitor thiomethyl-beta-galactoside (TMG), were studied to determine sugar and cation recognition abnormalities. Most of the mutants show good transport of melibiose but have lost the recognition of TMG. In addition, most mutants show little or no transport of lactose. Cation recognition is also affected as all of these mutants have lost the ability to transport protons with melibiose. The amino acids causing these mutations were determined by sequencing the melB gene on the plasmid. The mutations were located on helices I, IV, VII, X and XI. We propose that these five helices are in proximity with each other and that they line the sugar/cation transport channel.


Assuntos
Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Simportadores , Sítios de Ligação , Ligação Competitiva , Transporte Biológico , Metabolismo dos Carboidratos , Cátions , Membrana Celular/enzimologia , Resistência a Medicamentos , Escherichia coli/enzimologia , Melibiose/metabolismo , Moduladores de Transporte de Membrana , Proteínas de Membrana Transportadoras/antagonistas & inibidores , Proteínas de Membrana Transportadoras/metabolismo , Metilgalactosídeos/farmacologia , Mutação , Conformação Proteica , Bombas de Próton , Sódio/metabolismo , Tiogalactosídeos/farmacologia
7.
J Membr Biol ; 174(2): 135-40, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10742457

RESUMO

The melibiose carrier from Escherichia coli is a sugar-cation cotransport system. Previously evidence was obtained that this integral membrane protein consists of 12 transmembrane helices. Starting with the cysteine-less melibiose carrier, cysteine has been substituted individually for amino acids 374-396, which includes all of the residues in the proposed helix XI. The carriers with cysteine substitutions were studied for their transport activity and the effect of the water soluble sulfhydryl reagent p-chloromercuribenzenesulfonic acid (PCMBS). Studies were carried out on both intact cells and inside out vesicles. Cysteine substitution caused loss of transport activity in seven of the mutants (K377C, G379C, A383C, F385C, L391C, G395C and Y396C). PCMBS produced more than 50% inhibition in six of the mutants (S380C, A381C, A384C, F387C, A388C and L391C). Preincubation of the cells with melibiose protected five of these residues from the inhibitory action of PCMBS. It was concluded that the residues whose cysteine derivatives were inhibited by PCMBS probably faced the aqueous channel.


Assuntos
Cisteína/metabolismo , Escherichia coli/metabolismo , Melibiose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simportadores , 4-Cloromercuriobenzenossulfonato/farmacologia , Substituição de Aminoácidos , Transporte Biológico , Membrana Celular/metabolismo , Cisteína/genética , Escherichia coli/efeitos dos fármacos , Lítio/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutagênese Sítio-Dirigida , Fenótipo , Sódio/metabolismo
8.
Biochem Biophys Res Commun ; 268(2): 409-13, 2000 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-10679218

RESUMO

In a previous study 23 residues in helix XI of the cysteine-less melibiose carrier were changed individually to cysteine. Several of these cysteine mutants (K377C, A383C, F385C, L391C, G395C) had low transport activity and they were white on melibiose MacConkey fermentation plates. After several days of incubation of these white clones on melibiose MacConkey plates a rare red mutant appeared. The plasmid DNA was then isolated and sequenced. The two second site revertants from K377C were I22S and D59A. This change of aspartic acid to a neutral residue suggests that physiologically there is an interaction between K377 and D59 (possibly a salt bridge). The revertants from A383C were in positions 20 (F20L) and 22 (I22S and I22N). Revertants of F385C were intrahelical changes (I387M and A388G) and a change in C-terminal loop (R441C). Revertants of L391C were in helix I (I22N, I22T and D19E) and helix V (A152S). Revertants of G395C were in helix I (D19E and I22N). We suggest that there is an interaction between helix XI and helices I, II, and V and proximity between these helices.


Assuntos
Escherichia coli/metabolismo , Melibiose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simportadores , 4-Cloromercuriobenzenossulfonato/farmacologia , Transporte Biológico/efeitos dos fármacos , Escherichia coli/química , Escherichia coli/genética , Cinética , Lítio/farmacologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Mutação , Estrutura Secundária de Proteína , Sódio/farmacologia
9.
Orig Life Evol Biosph ; 26(2): 151-71, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8765685

RESUMO

The 5'-phosphorimidazolide of uridine reacts on Na(+)-montmorillonite 22A in aqueous solution to give oligomers as long as 7 mers. The maximum chain length increases to 9 mers and the overall oligomer yield increases when 9:1 ImpU, A5' ppA mixtures react under the same conditions. The oligomer yield and maximum chain length decreases with the structure of the added pyrophosphate in the order A5' ppA > A5' ppU > U5' ppU. Structure analysis of individual oligomer fractions was performed by selective enzymatic hydrolyses followed by HPLC analysis of the products. The regioselectivity for 3',5'-bond formation is 80-90% in the 9:1 ImpU, A5' ppA reaction, a percentage comparable to that observed in the 9:1 ImpA, A5' ppA reaction. Oligomerization of ImpU is inhibited by addition of dA5' ppdA, and MeppA. No oligomers containing A5' ppU were products of the 9:1 ImpU,A5' ppA reaction, a finding consistent with the simple addition of the ImpU to the A5' ppA and not the rearrangement of an ImpU-A5' ppA adduct. Concentrations of lysine or arginine which were close to that of the ImpU did not inhibit oligomer formation. Treatment of Na(+)-montmorillonite with 1 M arginine yielded arginine-montmorillonite, an amino acid-mineral adduct which did not catalyze ImpU oligomerization. Neither the 4-9 mers formed in the 9:1 ImpU, A5' ppA reaction nor the 4-9 mers formed by the base hydrolysis of poly(U) served as templates for the formation of oligo(A)s.


Assuntos
Bentonita/química , Oligonucleotídeos/síntese química , RNA/síntese química , Uridina Monofosfato/análogos & derivados , Aminoácidos/farmacologia , Cromatografia Líquida de Alta Pressão , Difosfatos/farmacologia , Oligonucleotídeos/antagonistas & inibidores , Uridina Monofosfato/química
10.
Zhong Xi Yi Jie He Za Zhi ; 9(4): 218-9, 197, 1989 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-2527089

RESUMO

This paper reports the determined results of rosette rates of red cell C3b receptor and active rosette (Ea) rates of T lymphocyte in 39 cases of nephrotic syndrome. Typology of nephrotic syndrome according to TCM differentiation symptoms, all the 39 cases were divided into three types: (1) 13 cases of deficiency of Qi of the Spleen with stagnancy of dampness; (2) 9 cases of deficiency of Yang of the Spleen and Kidney; (3) 17 cases of deficiency of Yin of the Liver and Kidney. The results showed that the red cell C3b receptor rosette rate and Ea rosette rate in 39 cases of nephrotic syndrome were significantly lower than those in the control. The difference between the two groups was very obvious (P less than 0.001) among the three types. The rosette rates of both in the deficiency of Qi of the Spleen and deficiency of Yang of the Spleen and Kidney were markedly decreased than those in the control (P less than 0.001). Whereas, the red cell C3b receptor rosette rate was lower than that in the control (P less than 0.01), and T cell Ea rosette rate showed no statistical difference (P greater than 0.05) in the deficiency of Yin of the Liver and Kidney. There was a close relationship between the immune dysfunction of red cell and the pathogenesis in nephrotic syndrome. There was markedly relationship between the pathogenesis of deficiency of Yang of the Spleen and Kidney and deficiency of Qi of Spleen with stagnancy of dampness and T cell immune dysfunction. While the Ea level in deficiency of Yin of the Liver and Kidney was closely correlated with the control. Probably this type was nephrotic nephrosis which had been treated with TCM-WM.


Assuntos
Medicina Tradicional Chinesa , Síndrome Nefrótica/imunologia , Receptores de Complemento/imunologia , Linfócitos T/imunologia , Adolescente , Criança , Pré-Escolar , Eritrócitos/imunologia , Feminino , Humanos , Lactente , Masculino , Síndrome Nefrótica/classificação , Receptores de Complemento 3b , Formação de Roseta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...