Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1393693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855753

RESUMO

Colorectal cancer is a common malignant tumor with high mortality, for which chemotherapy resistance is one of the main reasons. The high expression of ABCG2 in the cancer cells and expulsion of anticancer drugs directly cause multidrug resistance (MDR). Therefore, the development of new ABCG2 inhibitors that block the active causes of MDR may provide a strategy for the treatment of colorectal cancer. In this study, we find that dorsomorphin (also known as compound C or BML-275) potently inhibits the transporter activity of ABCG2, thereby preserving the chemotherapeutic agents mitoxantrone and doxorubicin to antagonize MDR in ABCG2-overexpressing colorectal cancer cells. Additionally, dorsomorphin does not alter ABCG2 protein expression. The results of molecular docking studies show that dorsomorphin is bound stably to the ABCG2-binding pocket, suggesting that dorsomorphin is a potent ABCG2 inhibitor that attenuates ABCG2-mediated MDR in colorectal cancer.

2.
Oncogene ; 42(14): 1101-1116, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792757

RESUMO

Although N4-acetylcytidine (ac4C) modification affects the stability and translation of mRNA, it is unknown whether it exists in noncoding RNAs, and its biological function is unclear. Here, nucleotide-resolution method for profiling CTC-490G23.2 ac4C sites and gain- and loss-of-function experiments revealed that N-acetyltransferase 10 (NAT10) is responsible for ac4C modification of long noncoding RNAs (lncRNAs). NAT10-mediated ac4C modification leads to the stabilization and overexpression of lncRNA CTC-490G23.2 in primary esophageal squamous cell carcinoma (ESCC) and its further upregulation in metastatic tissues. CTC-490G23.2 significantly promotes cancer invasion and metastasis in vitro and in vivo. Mechanistically, CTC-490G23.2 acts as a scaffold to increase the binding of CD44 pre-mRNA to polypyrimidine tract-binding protein 1 (PTBP1), resulting in a oncogenic splicing switch from the standard isoform CD44s to the variant isoform CD44v(8-10). CD44v(8-10), but not CD44s, binds to and increases the protein stability of vimentin. Expression levels of CTC-490G23.2 and CD44v(8-10) can predict poor prognosis in cancer patients. Furthermore, the antisense oligonucleotide (ASO)/SV40-LAH4-L1 peptide self-assembled nanocomplexes targeting CTC490G23.2 exerts a significantly suppressive effect on cancer metastasis. The outcome of this study will provide new mechanistic insight into the ac4C modification of lncRNAs and useful clues for the development of novel systemic therapies and prognostic biomarkers.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Processamento Alternativo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Isoformas de Proteínas/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...